Author
Geetika Aggarwal, Neil Mansfield, Frederique Vanheusden & Steve Faulkner
Abstract
In recent years, the air transport industry has made significant advancement in technology in context to fuel consumption, maintenance and performance. The most promising developments in terms of fuel efficiency and therefore minimisation of emissions is in future turboprop aircraft (i.e. those generating thrust from a propeller). The main drawback with propeller aircraft is that they tend to have noisier cabins, and there is an increased level of discomfort from vibration due to the tonality that is present. Human comfort perception is a key factor for aircraft manufacturers in the design of airframes and aircraft interiors; the aim of this research study is focused towards building a comfort model for aircraft to enable designers and engineers to optimise the passengers travelling experience. In this paper the authors demonstrate a laboratory experimental study in order to determine the relative importance of noise and vibration for the turboprop aircraft cabin. The results showed that with the increase in noise levels and vibration magnitudes the overall human discomfort also increased, indicating a cross- modal interaction.