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Abstract. With the technological advances in sensing human motion, and its potential to 
drive and control mechanical interfaces remotely, a multitude of input mechanisms are used 
to link actions between the human and the robot. In this study we explored the feasibility of 
using the human arm’s myoelectric signals with the aim of identifying a number of gestures 
automatically. We deployed k-nearest neighbour’s algorithm in machine learning to train and 
later identify gestures, and achieved an accuracy of around 65%. This indicates potential 
feasibility while highlighting areas for improvement both in accuracy and utility/usability of 
such approaches.  
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1. Introduction 
 
The problem of detecting hand gesture has been approached using various methods such as 
vision-based and glove-based approaches. Vision based approaches often involve detecting 
the fingertips and inferring joint-articulations using inverse kinematic models of the hand and 
wrist skeleton (Chaudhary et al., 2013). Glove based approaches reduce the computation time 
by having a more-direct measurement of the articulations. Our earlier work using an 
electromechanical glove, the SCRIPT device, showed promising results in detecting pinch, 
lateral and cylindrical grasps. The glove measured the movements of hand and wrist.  These 
were fed into developed machine learning algorithms based on Support Vector Machines 
(SVM), that achieved a gesture-type detection accuracy of around 91%. The methods held 
for identifying gestures for people recovering from neurological conditions such as stroke. 
(Leon et al., 2014a,b)  

Figure 1. left to right: tripod, lateral, cylindrical and rest grasps presented with SCRIPT 

glove  
 
Another possible approach is to utilise myoelectric signals recorded from hand and wrist 
muscles in detecting gestures. Tavakolan et al. (2011) used SVM for pattern recognition of 
surface electromyography signals of four forearm muscles to classify eight hand gestures. 
They concluded that it was feasible to identify gestures using the four locally placed 
electrodes. Similarly, Wang et al. (2013) used linear discriminant analysis to achieve an 
average accuracy of around 98% in detecting 8 hand gestures using two electrodes placed 
on the forearm.  

 
2. Material and methods 
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In the current study, we aimed at applying machine learning to identify hand and wrist 
gestures using a commercial off-the-shelf device, the Myo armband from Thalmic Lab1. The 
Myo armband is depicted in Fig 2. It benefits from 8 proprietary Electromyography (EMG) 
electrodes placed equidistally around the arm utilising an ARM Cortex M4 processor to 
communicate via Bluetooth 4. The device offers haptic feedback as well as position tracking 
using accelerometers, gyroscope and magnetometers. Unlike earlier studies where individual 
electrodes are applied to flexor and extensor muscles at different places along the arm length, 
the Myo armband offers the possibility of positioning the electrodes at a relatively fixed 
location with respect to one another. This was thought to have an impact on reducing the 
variability caused by electrode placement. An application was developed using ROS, Robot 
Operating System2, that allowed for reading from individual electrodes and conducting this 
experiment. ROS was used to allow for future testing of the interface with robots.  

 
Figure 2. Myo armband from Thalmic Lab 
  
2.1. Experiment Design 
 
A 3-phase experiment was designed. During phase A, participants made themselves familiar 
with the arm band and its operation and tried 4 gestures that are currently detected by the 
device software: closed fist, hand open with fingers spread, wrist fully flexed and wrist fully 
extended (as depicted in Figure 3). When participants were confident in using the device, they 
moved on to the next phase.  
 

Figure 3. Gestures used for familiarization with myo. Left to right: Closed fist, fingers spread, 
wrist flexed and wrist extended  
 
In phase B, the training phase, participants tried one of four gestures (0: Fist ; 1: Tripod 
Grasp; 2: Lateral Grasp; 3: Cylindrical Grasp) presented in random order onscreen for 5 
seconds, and electrode readings logged at 60Hz. Once all four gestures were performed 5 

                                                             
1 https://www.thalmic.com/en/myo/  
2 www.ros.org  
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times, participants moved to the next phase.  
 
In phase C, the recognition phase, the same gestures used in Phase B were shown onscreen. 
This time the produced gesture was recognised using a machine learning algorithm (detailed 
under 3.3) and the resulting gesture code was labelled as (0,1,2,3) and logged alongside the 
presented gesture codes at 60Hz.  A typical experimental session for the 3 phases was less 

than 15 minutes.  
 
2.2. Participants and experiment setup 
 
The experimental protocol was approved by the University of Hertfordshire’s ethics 
committee (approval number COM/PGR/UH/02057). A total of 26 participants agreed to take 
part. All were offered written consent beforehand. Participants sat in front of a 21” monitor, 
wearing the Myo armband on their dominant arm. The forearm was rested on a Saebo MAS 
arm support to limit additional muscle contractions. The experimental setup is shown in 
Figure 4. One participant did not complete the study due to technical issues. The rest (n = 25) 
completed all three phases.  
 
 
2.3 Machine learning method 
 
The utility of another approach in machine learning, the k-nearest neighbour’s method was 
also assessed. This is an instance-based classification mechanism where values of a new 
observation are compared to the training samples with the goal of finding a predefined 
number of training samples, k, with the closest distance to the observation. The distance 
parameter is often the Euclidean distance between the observation and the training data 
(Friedman et al., 1977; Dasarthy, 1991; Shakhnarovich et al., 2006).  
 
We used the python machine learning kit3 to apply this algorithm to label observations with 
their trained labels. The number of nearest neighbours was set to 15 (k = 15). To remember 

                                                             
3 http://scikit-learn.org/stable/index.html  
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the training data, an indexing approach known as ’KD Tree’ was used for fast indexing. When 
a queried gesture was close to a cluster of trained gestures, the trained gesture’s label was 
used to label the queried gesture. As the queried gesture was initialised by following onscreen 
instruction to produce a gesture, it was possible to link the recognised gesture to the one 
intended. 
Figure 4. Experiment setup 
 
3. Results 
 
Each participant repeated each gesture a minimum of 5 times during the recognition phase of 
the experiment. Each of the gestures were recorded for 5 seconds under each repetition. The 
logged data coded the participant ID, required gesture, detected gesture and the distance 
calculated for the nearest 15 neighbours. By comparing the required gesture to the detected 
gesture, it was possible to calculate the recognition accuracy for each participant and each 
gesture.  
Figure 5 shows the overall accuracy (M = 65.06, SD = 5.01) for each participant in the study.  

Figure 5. Overall recognition accuracy for study participants 
 
Figure 6 shows the detection accuracy variations between different gestures (Fist: M = 66.45, 
SD = 10.89; Tripod: M = 60.64, SD = 10.91; Lateral: M = 57.31, SD = 9.75; Cylindrical: M = 
66.57, SD = 11.09) 
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Figure 6. Recognition accuracy variation between different gestures (for all subjects) 
 
 
4. Discussion and Conclusion 
 
The recognition accuracy for the grasp performed is significantly lower compared to our 
earlier work where a mechatronic device was used. This could be due to the choice of 
grasps for this study, as it is not ideal for the placement of the armband. While tripod, 
cylindrical and lateral grasps have different finger and wrist articulations, their demand on 
supporting forearm muscles (flexor and extensor pairs) is less definite and therefore their 
myoelectric signals could be less distinct, especially when captured by electrodes placed 
around the arm as done in Myo. Studies of Wang et al. and Tavakolan et al. achieved better 
accuracy when electrodes were placed at different locations along the length of the arm.  
Another difference between these studies and the current one was the choice of a machine 
learning approach. We intend to repeat this analysis using the SVM approach (as used in 
the earlier study) to measure accuracy gains.  
 
The drop in accuracy could also have been caused by the fact that human muscles and 
consequently the myoelectric signals are substantially variable over time. Muscles change 
their relative intensity based on the speed of the produced gesture. In our earlier study, the 
gesture production speed was damped by the worn orthosis, leading to normalising the 
speed of gestures. This is why hand motion is not restricted in the current study. Despite 
this, the recognition accuracy is still significant.  

 
5. Future work 
Questions remain on the feasibility of using myoelectric signals as an input to a remote-
controlled robot on a factory floor as it is anticipated that such a system would enhance 
control and efficiency in production processes. So this requires further investigation into the 
usability of the armband in its intended context, to ensure users are able to effectively control 
and manipulate the robot using the myoelectric system and enjoy a positive user experience. 
Future studies will focus on: the choice of gestures so that they are distinct and better 
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identifiable; other key human factors and system design features that will enhance 
performance, in compliance with relevant standards such as ISO 9241-210:2010 (standards 
for human-system interaction ergonomic design principles); aspects of whether a machine 
learning algorithm should use individually-learned events in order to recognise an 
individual’s gestures, or if it is possible to use normative representation of a substantial set of 
learnt events to achieve higher recognition accuracy.  
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