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Abstract. 3D motion sensors are useful for systematic and comprehensive data collection 
towards yielding 3D human motion data for real-time ergonomic analyses and possible 
automated interventions. Accurate sensor placement helps to ensure decreased measurement 
errors and increased depth resolutions. This paper presents the optimum Kinect placement 
setup for accurate data capture in real-time ergonomic evaluations. An application is 
developed which tracks human skeletal data to yield the best output for the optimal distance, 
height, and field of view of the sensor. 
 
Keywords: Visual Gesture Builder; Discrete Gesture Basics; Work-Related 
Musculoskeletal Disorders. 
 
1. Introduction 
 
Work-related Musculoskeletal Disorders (WMSDs) are the most common cause of 
occupational ill-health on shop floors affecting the muscles, joints, tendons and other parts of 
the musculoskeletal system (Douphrate et. al., 2013; Grosse et. al., 2014). It affects manual 
labourers (Duy Nguyen et al., 2013), whose manual handling activities involve transporting 
or supporting of load by hand either by lifting, lowering, pulling, pushing, carrying, or 
moving, on the shop floor. These activities among operators if not well monitored can be 
detrimental to the worker’s health (Martin et al., 2012). In the United Kingdom alone, 9.5 
million working days were lost due to WMSDs in 2014/15. In a bid to curb this menace, 
researchers have developed many subjective and objective hardware and software ergonomic 
tools which evaluate the risks associated with manual handling on shop floors so as to reduce 
the risk of workers developing WMSDs. Correct application of these ergonomic risk 
assessment tools requires systematic and comprehensive approach to data collection 
(Okimoto & Teixeira, 2009; Diego-Mas & Alcaide-Marzal, 2014). Microsoft® Kinect is one 
hardware tool that can provide this as well as provide an opportunity for  real-time feedback 
which is crucial for enabling instantaneous remedial actions (Plantard et. al., 2015). This 
paper seeks to establish the optimum setup of Kinect placement for more accurate data 
capture in real-time ergonomic evaluations involving lifting operations on the shop floor.  

 
1.1 Background 
There are different approaches to data collection for real-time ergonomic evaluations on the 
shop floor. These approaches range from observation methods that use video capture systems 
(Okimoto & Teixeira, 2009; Deros et. al., 2015; Hernan & Paola, 2013; Mukhopadhyay et. 
al., 2015) to direct intrusive methods which utilise wearable Marker-Based sensors (such as 
Accelerometers, Goniometers and Inclinometers) attached directly to the operator’s body 
(Plantard et al., 2015; Dai & Ning, 2013).   
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In order to overcome the intrusive limitations posed by the use of Marker-Based sensors, 
low-cost depth cameras such as the Microsoft Kinect Sensor can be used. The Kinect Sensor 
provides an easy-to-use, calibration-free, and cheap alternative. It does not require markers 
and provides skeletal data that can be captured and analysed to obtain complex and dynamic 
human biomechanical motions in real time (Plantard et al., 2015; Dai & Ning, 2013). This is 
unlike ordinary video capture systems that though easy to use, are highly unreliable (Plantard 
et al., 2015) and do not give 3D information as well as accurate joint information of workers 
in congested workplaces (Peppoloni et. al., 2015).  
The use of the Kinect sensor by many researchers, to capture human motion data for 
ergonomic analysis, has been found to give new and interesting insights into ergonomic 
studies (Bonnechère et al., 2014). Martin et al., (2012) integrated a static ergonomic model 
with the Kinect so as to capture and analyse data during lifting operations and this yielded 
accurate measurement of the recommended weight limit and strain on the worker’s skeleton. 
It was also used to monitor and record the joint angles of workers during lifting operations so 
as to establish the correct and safe lifting techniques (Delpresto et al., 2013). Prakash 
Daphalapurkar (2012) used the sensor to capture the skeletal data of operators performing 
fastening operation on the shop floor for onward real time ergonomic evaluation using the 
RULA in Jack.  
Despite the potential usefulness of Kinect for real time ergonomic evaluation, it has been 
established from literature that the accuracy of the data captured with the Kinect can be a 
function of its placement. For example, in Dutta (2012), the Kinect was placed at distances 
ranging from 1m to 3m from an operator at 54° and 39.1° horizontal and vertical field of 
views respectively. This placement yielded accurate skeletal data used for ergonomic 
evaluations. A similar approach was used by Bonnechere et al (2014) in which the Kinect 
was placed at distances of 1.5m, 2.0m and 2.5m from the operator. The results showed that a 
distance of 2.5m from the operator was the optimal Kinect placement.  Banerjee et al., (2015) 
established that the accuracy of the depth values from the Kinect is sensitive to the distances 
of various objects within the field of view of the sensor on the shop floor. Their experiment 
revealed that if an object is too close or too far from the Kinect, the depth values are 
distorted. According to Khoshelham & Elberink (2012), the random error of depth 
measurement increases while the depth resolution decreases when the distance of the object 
from the Kinect is increased up to 5m. They therefore recommend that data be captured 
between distances of 1m to 3m from the Kinect.   
The Kinect v1, which is currently incapable of detecting manual handling gestures, was used 
in the above mentioned research. In this paper, we make the following contributions:  

(i) We make use of the machine learning technologies of Kinect v2 to train it in 
recognising a lift gesture. It is the plan that such a gesture will be used as a trigger 
to start skeletal kinematic data recording as well as to start real time ergonomic 
analysis of lift operations.  

(ii) We carry out a comprehensive experiment to determine the optimal shop floor 
Kinect v2 sensor placement towards collecting accurate ergonomic data. This will 
ensure a greater confidence in the results of future ergonomic data analysis. 

 
1.1.Problem Statement 
In the past, some researchers who used the Kinect v1 as a data collection tool for ergonomic 
analysis used trial and error methods to establish the correct locations to place the sensor 
(Duy Nguyen et al., 2013; Martin et al., 2012). The aim of the experiment described in this 



Contemporary Ergonomics and Human Factors 2017. Eds. Rebecca Charles and John Wilkinson. CIEHF. 

 

 
 

 

paper is to establish the optimum placement for the Kinect v2 sensor towards acquiring 
accurate gesture measurements as well as its limitations at various operating distances and 
corresponding fields of view. This exercise will provide the information needed to optimally 
place fixed Kinect v2 sensors for continuous shop floor observation. 
 
2. Methods 

 
2.1.Experimental procedure 
In this section, we discuss briefly how the tools in the Kinect for Windows® SDK 2.0 were 
used to train and detect a lifting gesture to trigger data recording for ergonomic analysis. 
Machine learning, which is the data processing ability of a computer to recognise complex 
patterns of data (Salle, 2015), and which involves using Kinect studio to record data clips 
(Lower, 2014), was used for gesture detection. The clips are then passed to the Visual 
Gesture Builder ((VGB) as found in the Kinect for Windows® SDK 2.0). Here the lift-gesture 
is trained using the Adaboost Trigger indicator; a machine learning algorithm (Nock & 
Nielsen, 2007), at point P3 (90°) at a distance of 2m from the Kinect with the height of the 
sensor at 1.2m (see Figure 1). 
 
After training the lift gesture, the .gbd file generated was utilised to develop an application by 
writing appropriate lines of codes in Discrete Gesture Basics which is another Kinect 
software tool for Windows® SDK 2.0. The developed application was then used to test the 
possible locations on the shop floor where the Kinect can be placed so as to acquire accurate 
data for ergonomic analysis.  
 
2.2.Experimental setup 
The components used in the experiment was the Kinect v2 sensor, a tripod stand, a laptop, 
tables, a simulated lifting object, meter rule, protractor, measuring tapes and software 
components which include the Kinect Studio, the VGB Preview and Discrete Gesture Basics. 
The software components are all found in the Kinect for Windows SDK 2.0. 
In order to ascertain the optimum locations where the Kinect can be placed during data 
collection, measuring points (𝑃") in the environment at varying distances (𝐷") and orientation 
were set up as depicted in Table 1 and Figure 1. 
 

Table 1 - Points of placement at various distances and angles 
             Points 
 
Parameters 

 
𝑷𝟏 

 
𝑷𝟐 

 
𝑷𝟑 

 
𝑷𝟒 

 
𝑷𝟓 

𝑫𝟏 (m) 2.0 2.0 2.0 2.0 2.0 
𝑫𝟐 (m) 3.0 3.0 3.0 3.0 3.0 
𝑫𝟑 (m) 4.0 4.0 4.0 4.0 4.0 
 𝜽𝟏 𝜽𝟐 𝜽𝟑 𝜽𝟒 𝜽𝟓 
𝜽(°) 55 70 90 110 125 

 
At each point, an operator lifts a load at a certain measured distance from the Kinect and at an 
angle which was maintained within the field of view of the Kinect v2 sensor, that is between 
55° to 125° in  the horizontal direction and 60° to the vertical.  
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Furthermore, for each of the points in Table 1, the Kinect v2 was adjusted to three heights; 
𝐻-= 1.2m, 𝐻.= 1.7m and 𝐻/= 2.2m. This enabled us to investigate the optimal height to 
place the Kinect on a shop floor.  
 
At each distance 𝐷", specified angle placement 𝜃"	and height 𝐻"  of the Kinect, an operator 
lifts a load. This load lift activity was recorded using the Kinect studio and analysed using the 
developed application in Discrete Gesture Basics 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1 - Experimental setup for optimal Kinect v2 placement showing observation points, 

angles and distances (See Table 1). 
 
3. Results  
 
The aim of the experiment conducted in this research was to establish the optimum 
parameters of Kinect placement for more accurate data capture in real-time ergonomic 
evaluations involving lifting operations on the shop floor. The experiment started with 
training the lift gesture in Visual Gesture Builder. During the training, 32 lifting gestures 
were used. This resulted in 3079 labelled examples with an average RMS of 0.299 over 445 
frames. Furthermore, an accuracy of 100% was obtained while the error was found to be 0%. 
After the lift gesture training, an application that can detect the lift gestures of operators on 
the shop floor was developed in Discrete Gesture Basics. The application could also display 
the confidence of the lift ranging from 0-1. The higher the confidence value at any point, the 
more the likelihood of the Kinect to track the operator at that point. 
 
Figures 2 and 3 show the maximum confidence obtained at each of the location points for 
distances of 2m, 3m, and 4m, as well as the computed area of the confidences. The computed 
area of confidence was calculated by taking an integral of the confidence values under the 
confidence curve during the load lift operation. Table 2 summarises the overall result of the 
Kinect placement experiment as depicted by Figures 2 and 3. The terms ‘YES’, ‘NO’ or 
‘PARTIALLY’ were used as follows: ‘YES’ means that the sensor can accurately track and 
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give the correct gesture of the operator at the given location with confidence values above 
0.5. ‘NO’ means that the sensor cannot track or ‘see’ the operator at that location. 
‘PARTIALLY’ means that the sensor could track the gesture of the operator with confidence 
values below 0.5.  
 
 

 
 
Figure 2 - Computed confidence area (𝐶3456) under the confidence curve within a time frame 

of 10 seconds. 
 
 

 
Figure 3 - Maximum confidence 𝐶768 of the confidence curve within a time frame of 10 

seconds. 
 

Table 2 - Summary of the Kinect v2 tracking performance at various points. 
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Points 
Parameters 

 
𝑷𝟏 

 
𝑷𝟐 

 
𝑷𝟑 

 
𝑷𝟒 

 
𝑷𝟓 

𝑫𝟏, 𝑯𝟏 Partially Yes Yes Yes No 
𝑫𝟐, 𝑯𝟏 Partially Yes Yes Yes No 
𝑫𝟑, 𝑯𝟏 Partially Yes Yes Yes No 
𝑫𝟏, 𝑯𝟐 Partially Yes Yes Yes Partially 
𝑫𝟐, 𝑯𝟐 Partially Yes Yes Yes Partially 
𝑫𝟑, 𝑯𝟐 Partially Yes Yes Yes Partially 
𝑫𝟏, 𝑯𝟑 Partially Yes Yes Yes No 
𝑫𝟐, 𝑯𝟑 Partially Yes Yes Yes Partially 
𝑫𝟑, 𝑯𝟑 Partially Yes Yes Yes Partially 

 
 
4. Discussion and Conclusion 
 
Inaccurate placement of the Kinect on the shop floor during data collection for ergonomic 
evaluation has been found to lead to inaccurate depth values. Keeping the Kinect within the 
correct field of view and at correct distance and height from the operator is a key requirement 
in ensuring more accurate output. The results of training the lift gesture in the VGB showed a 
100% accuracy and 0% error meaning that the training was perfect and the .gbd file and 
classifiers generated were accurate. This accurate training data was then utilised in 
developing the application in Discrete Gesture Basics, which is a tool in Kinect for windows 
SDK 2.0. The application can track up to 6 people simultaneously (Mgbemena et al., 2016).  
Furthermore, Figures 2 and 3 show that at the two extremes of the field of view (that is at 𝑷𝟏 
and 𝑷𝟓), the Kinect can only partially track humans as some of the skeletal information 
cannot be tracked. This is further justified by the low confidence values and low values of 
confidence area obtained at these points. However, within the field of view (that is at	𝑷𝟐, 𝑷𝟑 
and	𝑷𝟒), the Kinect can track and generate accurate joint information of the operator. This is 
again justified by the high confidence values obtained at the distances of 2m to 4m and 
heights of Kinect varied at 1.2m, 1.7m and 2.2m. Moreover, the Kinect cannot track when it 
is maintained at a height of 1.2m, with the operator at any distance between 2m to 4m and at 
an angle 125° from the sensor. Also, it cannot track when it is at a height of 2.2m, with the 
operator at a distance of 2m and at an angle of 125°. Hence it is recommended that the Kinect 
should not be placed at these locations under any circumstances. 
Therefore, it is the recommendation of the authors of this work that during data collection for 
ergonomic evaluation on the shop floor using the Kinect, the operator should stay in the 
envelope defined by points 𝑷𝟐, 𝑷/, 𝑷: and at a distance of between 2m to 4m as specified in 
Table 2. This is because this is the envelope within which ergonomic data can be collected 
with highest confidence. Data obtained at the points represented by ‘Partially’, have low 
confidence and can therefore contain depth measurement errors.  
In conclusion, this paper investigated the feasibility of detecting a manual shop floor activity 
using the Kinect v2 sensor so as to determine the optimal positions for Kinect v2 placement 
for more accurate data collection on the shop floor. These positions were found to be between 
70° to 110°in the horizontal field of view of the Kinect v2 and within a 60° vertical field of 
view. Outside these angle ranges, the Kinect v2 can either partially track humans or not track 
at all.  
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The study provides ergonomists as well as other researchers with the optimal shop floor 
placements for the Kinect sensor during data capture for ergonomic risk assessment purposes. 
One limitation of the study however, is that the developed application is meant to be used on 
a Shop floor devoid of occlusions. It is part of a wider programme of work in which tools are 
developed for real-time evaluation and remedial action in industrial workplaces. 
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