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ABSTRACT 

We are concerned with analysing the temporal dynamics of simple skills, and whether such analysis 
can allow us to distinguish between different levels of ability. In order to do this, we focus on the 
task of drawing simple shapes. The challenge is to develop a means of collecting both force and 
movement data, and then describing these data in terms of time-series analysis. In this paper, we 
apply two methods for time-series analysis (1/f scaling and Approximate Entropy) to drawing. 
Ultimately, the goal of the work is to consider whether these measures allow us to differentiate 
ability in human performance. We show that it is possible to separate ‘good’ and ‘poor’ performers 
using these methods, and that this separation agrees with the self-identified ability of participants. If 
it is possible to provide ways of describing performance, then we can evaluate whether this is 
improving (as the result of rehabilitation or training) or whether it is deteriorating (as the result of 
injury or illness). 
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Introduction 

When we first learn to perform a new task (be it a toddler learning to walk, a grade-school child 
learning to play the violin, or a pensioner learning to wing-walk), there are many possible ways to 
perform the action, most of which are less than desirable and lead to unwanted outcomes. The task 
and the objects used impose constraints on performance (Newell, 1986) but we have flexibility over 
how to act inside these constraints. With practice, we discover ways of performing actions that 
require minimal effort and which permit high degrees of control. These correspond to minimum 
entropy (Hong, 2010). In other words, the ‘system’ (that is, the person performing an action with 
objects within the constraints of the task) self-organises, so that performance involves the most 
efficient combination of physical and cognitive effort. This means that ‘expert’ performers ought to 
have low levels of variability (because they will perform the action consistently). The implication 
of this statement is that ergonomics (and any subject involved in studying human performance) 
should have in its toolkit a set of methods which allow definition and measurement of entropy. A 
glance through ergonomics textbooks suggests that such a measure is scarce. One aim, therefore, in 
writing this paper is to present methods that allow entropy to be measured and to explore whether 
such methods provide useful information to the analyst. A reason why people might wish to apply 
such measures is for the objective evaluation of changes in performance, e.g., improvement due to 
rehabilitation or training, or deterioration due to illness, injury or task demands. 

For ergonomics, entropy was a familiar measure of human activity in the 1950s (Crossman, 1953). 
It was typically used as a way of relating information theory to action (in terms of defining how a 
limited bandwidth channel could be used to control a movement). So, for example, Crossman’s 
(1953) study involved people sorting cards under different conditions and he demonstrated how 
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performance time varied according to task conditions. In this paper, our application of the concept 
is less to do with information channels for single actions and more to do with consistency of a 
signal over repeated trials. While entropy implies that low variability is desirable, it is paradoxical 
that too much consistency can be detrimental to performance because it reduces the potential to 
adapt in the face of changing task demands. So, the ‘expert’ balances variability and consistency to 
achieve ‘optimum variability’ (Goldberger, 1991). Across a series of studies, Bril shows how expert 
and novice practitioners differ in terms of their ability to respond to contextual demands (Biryukova 
et al., 2015; Bril et al., 2010, 2012). In this work, behaviour arises from the satisfaction of task 
specific constraints, which include the force to apply, the velocity or distance to move the tool to 
produce such force, and the angle of incidence for impacts between tool and material. The 
constraints define the functional parameters which need to be managed in order to achieve 
successful performance in the task. For instance, experts (flint-knappers and stone bead makers) 
seek to hold the functional parameter (kinetic energy) constant when using different types of 
hammer or material, while novices vary kinetic energy. In this paper, we take a much simpler task 
(drawing shapes) which people can self-identify as having high or low ‘skill’ in performing. 

Drawing 

From the preceding discussion, human movement requires the person to operate within constraints. 
In drawing (and handwriting) these constraints could involve the size and shape of drawing 
implements (and how easy these are to grasp and move), the contact between drawing implement 
and writing surface (and how easy it is to move smoothly), and the object to be drawn (and whether 
this requires changes in direction of movement). In terms of movement, there are systematic 
relationships between the velocity of the pen’s tip and the geometry of its movement, such that the 
angular velocity of the pen’s movement tends to be constant when radius of curvature changes 
(Viviani and Terzuolo, 1982), and follows a 2/3 Power Law (Lacquaniti et al., 1983). This suggests 
that, rather than the length of a line being the prime unit of control in drawing, shapes are 
decomposed into discrete ‘units’ and the transitions between units are managed. This means, for 
example, that people slow down when drawing tight curves. In their model of drawing, Lacquaniti 
et al. (1983) offer an elegant explanation of why this might occur as the result of the coupling of 
two independent oscillators. This implies that mathematical equations which reflect oscillator 
behaviour could be appropriate in the description of drawing. However, subsequent work suggests 
that the coupled oscillator model does not capture all aspects of drawing. For example, Wann et al. 
(1988) propose that people could produce behaviour that corresponds to the 2/3 Power Law through 
minimising jerk, i.e., by attempting to draw as smoothly as possible, and this can be described 
through mathematical analysis of the movement. In both cases, the velocity and pressure profiles 
(recorded through sensors on the drawing instrument or on the drawing surface) can be analysed to 
characterise changes in movement over time. As an example of a time-series, Figure 1 shows the 
trace of a participant drawing a triangle five times, without lifting the pen of the surface.  
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Figure 1: Example of velocity profile of drawing a simple shape 

Knowing that the action (draw triangle) is repeated five times, we might be able to see some 
repeating pattern just by looking at the profile, but this does not provide sufficient evidence to tell 
whether the action is ‘good’ or ‘poor’. We consider two approaches to the analysis of such time-
series data. 

Time-series analysis measures  

Entropy 

In Shannon entropy, used in information theory, Hs is given by: 

𝐻" = −∑ 𝑝' log 𝑝'	'                               [1]) 

where pi is the probability of the ith symbol being present in the system.  

From equation [1]), Hs will be high if every state of the system has the same probability of 
occurrence. Entropy of a time series can be used to indicate consistency, i.e., in terms of repeating 
patterns within the time-series (Yentes, 2016). If the method cannot find many repeated patterns in 
data, then the signal could be called ‘random’ or ‘chaotic’.  Approximate entropy is a popular 
measure for this purpose, and is widely used in the medical domain, e.g, ion cardiology (Shin et al., 
2006), respiration (Burioka et al., 2002), and biomechanics of gait (Georgoulis et al., 2006).  

1/f scaling 

1/f noise can be applied across different cognitive tasks to indicate a ‘softly assembled’ system 
focussing on interaction-dominant dynamics (component dynamics alter interactions) rather than 
component-dominant dynamics (behaviour arises from components, demarcated and assigned 
specific functions). There is compelling evidence that human activity exhibits long-term stability 
(or repeated patterns of variability) that indicate the existence of interaction-dominant systems 
(Kello et al., 2007).  

Study One: 1/F scaling in scribbles and drawing simple geometric shapes 

In this study, we asked participants to produce simple drawings and used 1/f scaling to analyse their 
performance. The aim was to determine whether it is possible to distinguish ‘good’ and ‘bad’ 
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performance in this activity, and whether such an objective distinction corresponds to the self-report 
of participants. 

Participants 

Seven participants (5 female, 2 male), all right handed, mean age 23 years, volunteered to take part 
in this study. Two participants self-identified as ‘good drawers’ and the others classed themselves 
as ‘moderate’ drawers. 

Equipment and data analysis 

Data were collected using a digitising tablet (Wacom INTUOS 4 XL). This is a large (487.7mm x 
304.8mm) resistive surface on which participants draw with a purpose-built pen. The marks made 
on the surface are displayed on a display screen positioned in front of the surface. Pen movement 
and pressure were recorded and summarised using software called MovAlyzeR (NeuroScript, 
USA). Further analysis was conducted using MatLab (The MathWorks, USA). 

Calculating 1/f scaling 

Velocity and Pressure data were imported into MatLab and processed using the pwelch function to 
determine the signal power spectral density (PSD) with a Fast Fourier Transform (FFT) using a 
Hamming window length of 20 samples and an overlap of 10. After applying pwelch, the results 
were log transformed (loge) for power and frequency, and a linear regression applied to the resulting 
scatterplot. 

Procedure 

The experimental design was approved by the Ethics Process in School of Engineering, University 
of Birmingham. Participants were asked to draw three different patterns:  

1) scribble for 10 seconds;  
2) rectangle (a four side shape with sharp angle); and  
3) a square with a cross and a triangle on the top (which looked like a house). 

Each drawing pattern was produced 10 times by each participant, and each pattern was to be 
performed without removing the pen from the surface (see figure 2). Prior to the data collection 
phase, each participant was given a brief explanation of the experiment and allowed to practice 
using the pen to draw shapes and scribble on the tablet. Next, participants were asked to produce 
three examples of each of the drawing actions. If they had problems in drawing the shapes without 
lifting the pen, this was discussed and alternative ways of performing the action suggested. Once 
the participant was confident that the shapes could be drawn without difficulty, the data collection 
began. Data (velocity, acceleration, pen pressure) were collected at a rate of 100Hz. 

 

 
Figure 2: Examples of Drawings (scribble, rectangle, ‘house’) 
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Results 

The summary of velocity (m/s) data for each participant is shown in Table 1. 

Table 1: Summary of Velocity Data 

  Participant 
Shape V_Mean 1 2 3 4 5 6 7 
Scribble 36.9 27.7 61.1 25.2 44.1 50.5 39.3 10.3 
Rectangle 14.3 10.2 12.1 8.1 21.1 15.8 21.5 11.5 
‘Square and cross’ 7.9 6.3 8.7 10.2 3.2 7.5 10.1 9.1 
Mean  14.7 27.3 14.5 22.8 24.5 23.7 10.3 

 

From Table 1, one can see that participants had higher velocity when scribbling than when drawing 
the ‘house’, with the square between these two. Participant 7 is an interesting case, in that her 
results tended to have similar (quite slow) velocity on all shapes.  

 

           
Figure 3: Summary analysis of velocity (left) and pressure (right) for the different shapes 

In 1/f scaling, the slope of the line is indicative of the stability of the system that produced the data. 
So, a highly stable ‘system’ would have a steep slope, and a highly variable system would have a 
shallow slope. We can see, from the graphs in Figure 3, that the ‘scribble’ has a steep velocity slope 
and a similar pressure slope to the other shapes.  
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Figure 4: Comparison of ‘best’ and ‘worst’ drawer in this study 

Figure 4 shows the performance on the ‘square and cross’ task of two participants who, in their own 
opinion found the task ‘hard’ (a, c) or ‘easy’ (b, d). While there is not much difference in the 
‘scribble’ slope, there is a clear difference in the slopes for the rectangle and ‘square and cross’. 
Comparing graphs (c) and (d), the rectangle for the participant who found the task ‘hard’ (c) is 
relatively flat, implying that there was less control in its production, while the slope for the ‘square 
and cross’ is a little steeper, implying more control. The slopes of the lines can be quantitatively 
compared using their regression coefficients (R2), which are around -3 for the scribble, -1.23 and -
2.13 for the rectangle; -2.5 and -2 for the ‘square and cross’. This implies that there was little 
variability in the production of the scribble. People would hold the pen and move it at the same 
velocity and with little effort to alter this movement. In contrast, the shapes which required change 
of velocity at angles show more variability in velocity. This is, as one would expect, a reflection of 
the control demands of the task. 

Study Two: Approximate Entropy 

Rather than drawing on a tablet, we wanted to record drawing on paper. Obviously, one cannot put 
paper on a capacitive tablet surface and use a normal pen, so we decided to design and build our 
own surface (using Force Sensitive Resistors and an Arduino microprocessor). 
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Figure 5: Drawing board and Velocity trace of one participant drawing five triangles  

Calculating Approximate Entropy 

Entropy involves dividing a waveform into sections, and then comparing each section to all other 
sections. If adjacent sections match, then entropy is low, and the waveform (at that point) is stable. 
To calculate approximate entropy, we need: the length N of input time series, the length m of a 
vector, and the tolerance radius r. Selection of these values is explained by Yentes (2016). As an 
example, a time series with N = 6 could be {x1, x2, x3, x4, x5, x6}.  Assuming a vector length, m, = 
2, we divide the time series into 5 (N-m+1) x 2 digit vectors: {x1, x2}, {x2, x3}, {x3, x4}, {x4, x5} 
and {x5, x6}. If we set radius r = 1, then the first 2 digit vector, {x1, x2}, can be compared with 
others in the 5 vector series, assuming (x1-r, x1+r). If there is a match, then it is counted and 
recorded as the conditional probability (i.e., match / N). This is repeated for all 2 digit vectors. 
Next, let m = m+1, and repeat the process. The conditional probabilities are converted to natural 
logs, and the sum of scores for m and m+1 calculated. The approximate entropy is calculated as log 
score m – log score m+1. The range of the values of approximate entropy is from 0 to 2, 0 indicates 
no entropy or a perfectly repeatable series (sine wave); 2 indicates a random series (white noise). 
Thus, lower values indicate greater stability in the data; higher values indicate more variability. 

Results 

From table 2, drawing a triangle using the left hand has highest entropy. This suggests that 
performance is more variable (for some of the participants) which, in turn, suggests that the control 
required in performing this action is the most difficult. This could be due to the difficulty a right-
handed person has in manoeuvring the pen in the various turns required for the triangle.  

Table 2: Approximate Entropy averaged for each participant and each shape 

Participant Mean Circle_L Circle_R  Triangle_L Triangle_R 
1 0.65 0.76 0.51  0.69 0.65 
2 0.38 0.34 0.36  0.41 0.42 
3 0.57 0.55 0.40  0.71 0.61 
4 0.43 0.42 0.40  0.49 0.39 
5 0.56 0.63 0.42  0.55 0.65 
Mean  0.54 0.42  0.57 0.54 

 

By contrast, drawing a circle using the right-hand had the lowest entropy and suggests smooth, easy 
performance. Figure 6 shows the shapes that were recorded from the drawing surface. 
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Figure 6: Recordings of shapes drawn by participants. Each row contains the lines drawn by one 
participant. The shapes are: Circle drawn with left hand; circle drawn with right hand; triangle 
drawn with left hand; triangle drawn with right hand. 

From Figure 6, one can visually identify some set of shapes as being more symmetrical or ‘tidy’ 
than others. These correspond, to some extent, with self-identified drawing abilities of the 
participants. So, participants 2 and 4 felt that they were ‘good’ at drawing. Considering the entropy 
scores in Table 2, one can see that these participants tended to have lower scores than the others. 

Discussion 

Our aim in writing this paper was to present two methods for time-series analysis which can be 
applied to human movement. We have used drawing shapes as the candidate task and asked 
whether it was possible to differentiate, on the basis of repeated performance of a drawing task, 
good and poor performance. Comparing the results suggests that there is potential for such an 
approach: there are differences between participants, and these differences seem to reflect the visual 
appearance of the drawn shapes and the self-identified drawing abilities of participants.  
Generalising from this study, it is proposed that understanding variability in human movement can 
not only provide insight into variation in ‘skill’ but can also be used as a means of quantifying 
differences in performance, say due to injury or debilitation. In other words, time-series analysis 
could be a useful means of analysing simple repetitive actions that an occupational therapist might 
ask a stroke patient to perform.  Calculating the entropy or the slope of a 1/f plot can be used to 



Contemporary Ergonomics and Human Factors 2018. Eds. Rebecca Charles and John Wilkinson. CIEHF. 
 

compare performance across different trials in order to assess improvement or deterioration 
objectively. 
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