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Abstract. Using machine learning techniques, it is possible to learn and subsequently 
automate certain driver-focused features in consumer vehicles. A human factors approach is 
taken to review current machine learning systems. Subsequently, it is found that current 
methods used for machine learning involve long learning times and might not be sufficient to 
grasp a true understanding of interaction, routine and feature use - a new method is proposed. 
Issues surrounding trust and acceptance in automation are also explored and 
recommendations made.  
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1. Introduction 
 
The basic concept of machine learning is for a system to learn about a certain task based on 
information provided to it and information that it can gather itself - without being explicitly 
programmed by the user. Originating as a sub-area of artificial intelligence, some applications 
of machine learning have been evidenced in recent products such as a self-learning watering 
system (MyBlossom, 2015) and further products such as Smart Lightbulbs (Power-up your 
lights, 2015) are bringing self-learning features into the home. With all self-learning/machine 
learning and automated systems the acceptance, desirability and uptake by consumers is 
heavily dependent on the system’s ability to complete a task to the same, or better standard 
than a user can. Considering a consumer-focused machine learning (ML) system, the way in 
which it can achieve this relies initially on its capability to access information and learn the 
desired task(s).  
Many automotive manufactures (such as BMW, Jaguar Land Rover, Mercedes) are currently 
looking to apply ML and autonomous technology to cars each with varying scope. One 
application of such ML could be to learn a driver’s pattern of engagement and use of certain 
vehicle features and then automate these tasks to mimic a driver’s normal feature interaction 
routine. Eventually, this could take care of many of the non-essential driving tasks - allowing 
the driver to concentrate solely on the task of driving without having to expend cognitive 
effort on other aspects of the vehicle - bringing considerable safety and user experience (UX) 
benefits.  
Some examples of current feature-sets found in the literature for such ML systems include 
(but are not limited to): predictive call list which suggests ‘speed-dial’ contacts, phone 
reminder to remind the driver of a forgotten phone, heated/cooled seats that warm/cool the 
vehicle’s seats autonomously, timed climate that auto activates the climate, cabin temperature 
that autonomously adjusts the cabin temperature, seat massage that activates the in-built seat 
massage autonomously and media which selects the preferred in-car entertainment source. 
From reviewing the literature on various ML systems, and with an understanding of the 
process of learning and automation, three areas of interest for further research were 
highlighted which form the basis of this paper: 
Question 1. (Q1) How can the accuracy of ML systems predictions be improved? 
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Question 2. (Q2) How can the time taken for the ML system to learn a routine be decreased? 
Question 3. (Q3) How can users trust and acceptance of ML systems be managed? 

 
2. Methods 
 
To answer the three highlighted questions, it was necessary to fragment them into sub-
questions to ensure effective focus of research. To begin this exploration, two models 
explaining an example of an ML function were assessed and critiqued:  
 
 
Figure 1. Generic timeline of Machine learning. 
The timeline in Figure 1 shows three stages, consisting of: A learning phase - whereby a 
system is recording data and ‘learning’ a user’s routine. An activation stage - where a system 
has enough information to begin automation. Finally, the automated phase - where a system 
is automating the feature. The grey area highlighted shows the human factors interest in this 
project – the conclusion of the learning phase and the transition into automation. Where it is 
shown how the activation point is directly related to, and solely dependent on the 
effectiveness of the learning phase and therefore depends entirely on the system’s ability to 
understand the user’s routine (i.e. learning). The learning phase in typical machine learning 
systems can be invisible to the user, where some current systems have no communication 
with the user until activation is reached. Considering Figure 1 further questions were found:  
Ø What can be done in the ‘learning phase’ to bring the ‘activation’ point forward? (Q2) 
Ø How can actions in the ‘learning phase’ ensure accuracy in the ‘automated phase’? (Q1) 
Ø Would communication between system and user benefit the ML efficiency? (Q1 Q2 + Q3) 
Ø How does the user feel about the time taken to automate considering their perceived level 
of routine? (Q2 + Q3) 
It appears the method for learning as explained in Figure 1 is solely dependent on the user 
exhibiting a routine (as that is often the only data being collected), which opens an interesting 
area for further research. Considering this, Figure 2 was next examined which details an 
example of a method used by ML systems to learn routine and reach automation: 
 
 
 
Figure 2. Common method of learning routine  
Figure 2 describes the process of user interaction, the deducing of routine and subsequent 
automation - all of which is based on the user’s HMI interaction. The red arrow shows a 
discrepancy between the system’s automation and the actual routine of the user. Two further 
sub-questions can be drawn from Figure 2:  
Ø What other forms of information can a ML system use during the ‘learning phase’? (Q1+Q2) 
Ø What are the differences (perceived and actual) between the features’ outputs during the 
learning stage and the features’ outputs during the automated phase? (i.e. What are the 
differences between the user’s actual routine and the system’s prediction of routine) 
 
Considering both Figure 1 and Figure 2 it was also interesting to consider the impact of trust 
and mistrust of automation (Q3). To address this, an initial literature search was first conducted 
to give a background for further research. This revealed how trust is ‘an important component 
in technology acceptance and adoption’ (Bahmanziari, Pearson, & Crosby, 2003) and in order 
for potential customers to trust technology (such as ML and autonomous systems), it is 
important for OEMs (Original Equipment Manufacturers) to build up a level of trust between 
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themselves and their potential customers. It has also been previously shown how ‘brand trust 
is rooted in the result of past experience with the brand and it is also positively associated with 
brand loyalty’ (Meschtscherjakov, Wilfinger, Scherndl, & Tscheligi, 2009). These findings are 
important for new autonomy-based features such as in ML applications as they show how such 
projects will be key in building trust between consumers and OEMs. This trust could later be 
‘exploited’ to ensure the smooth introduction of future automated systems where trust is key 
(such as self-driving cars).  
Trust also has a vital role to play in the time taken in the ‘learning phase’, as it was learnt that 
mistrust in the learning algorithms can increase perceived time to automate; whereas trust in 
the system and understanding of system status / progress could decrease perceived times and 
allow users to be more accepting of the ‘learning phase’ (see (Karaca, Erbil, & Ozment , 2011). 
Considering the understanding of system status, it has also been shown how ‘trusting smart 
systems depends on those systems sharing the user’s goals and systems are deemed more 
‘trustworthy and acceptable when they also provide information’ (Verberne, Ham, & Midden, 
2012). 
Following the critique of current models and an initial literature search concerned with trust 
and acceptance, the scope for a focused literature review was then set. The focus of this review 
covered: 
• Understanding routine and interaction - to increase prediction accuracy (addressing Q1) 
• Measuring patterns and engagement - to speed up the learning time (addressing Q2) 
• Communication requirements between a ML system and user (addressing Q1, Q2 and Q3) 
• The effects and affects of acceptance, trust and mistrust on automation (as required from the 
gaps in the research and as raised in Q3) 
Using Warwick University’s Library catalogue and online journal subscriptions a literature 
search was conducted using key terms from the highlighted questions. Literature was assessed 
for accuracy, reliability and validity considering data collection techniques, appropriateness of 
assessments/ statistical tests consistency of findings with previous work, references to support 
statements and conclusions and applicability of research to the questions highlighted. 
It is apparent that there has been a significant focus recently on increasing automation and 
adding ML ability to homes – commonly known as ‘smart homes’. However, little work has 
been published about ML and routine in an automotive context. For this reason, the literature 
review began by looking for extractable lessons learnt from smart home research. Later, 
healthcare research was analysed with particular focus on information about decreasing 
perceived waiting time in doctors’ surgeries. Further to this, routine was examined from a 
psychological perspective to understand its true nature. Other models of machine learning were 
also examined particularly one from stock market trading where information about other 
methods were reviewed and critiqued. Considering trust and acceptance - research from 
healthcare, cyber security and automotive specific sectors were looked at and applicability to 
automotive ML was examined. 
 
3. Results 
 
The key points to emerge from the literature review are summarised below: 
Learning, routine and user engagement (Addressing Questions 1 and 2) 
• An ML system needs to be able to differentiate between a wrong prediction, a one-off 
change in driver interaction and a change in routine (Rashidi & Cook, 2009) 
• An ML system should look for a variety of ways of collecting data from the user to aid in 
the learning of their routine and to understand the hierarchy and impact of the data collected 
(Das, Cooke, Bhattacharya, Heierman III, & Lin, 2002) 
• Consider start-up triggers for activation of features - what might these be and how can they 
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be controlled to ensure accuracy and learning of routines? (Rashidi & Cook, 2009) 
• Consider methods for allowing users to input and edit patterns and automation timetables to 
add to satisfaction, predictability and accuracy (Rashidi & Cook, 2009) (Domingos, 2012) 
• Be aware of the non-rigid and emotionally dependant variation in routine and patterns to 
improve accuracy of automation and improve learning ability (Cohen, 2007) 
• The extent to which different routine influencers affect each routine characteristic and 
feature engagement would be a beneficial study for an ML project. (Cohen, 2007) 
• A multidisciplinary approach to improving the models depicted in Figure 1 and Figure 2 
would be beneficial and including influences from computer science would give a better 
understanding of what information/data is useful to collect. Ranking information importance 
in a hierarchy would benefit information processing (Das, Cooke, Bhattacharya, Heierman 
III, & Lin, 2002) 
• Testing ML/automation within a vehicle simulator will improve safety and limit effects on 
trust and acceptance (Karel, Cornelie, Tineke, Bart, & Marika, 2008) (Brookhuis & De 
Waard, 2005). 
Trust and acceptance (Addressing Question 3) 
• Ensure transparency in the learning times and system status to reduce perceived learning 
times (Karaca, Erbil, & Ozment , 2011) and (Pitrou, et al., 2009)  
• Mistrust in the learning ability of a system increases perceived time to automate (Karaca, 
Erbil, & Ozment , 2011) (Weyner, Fink, & Adelt, 2015) 
• Look for ways to improve privacy and handling of personal data, including being 
transparent with users about data processing within an ML system (Jacobsson, Boldt, & 
Carlsson, 2016) 
• Workload and cognitive strain could be useful indicators of acceptance, through 
understanding the measurements before/after automation (Karel, Cornelie, Tineke, Bart, & 
Marika, 2008) 
• People are becoming more expectant of automation in vehicles (Weyner, Fink, & Adelt, 
2015) 
• Increasing number of malfunctions and errors increased the participants’ perception of 
lower control (Weyner, Fink, & Adelt, 2015) 
• Lack of system status information and therefore ‘mode confusion’ decreases perception of 
control and therefore acceptance  (Weyner, Fink, & Adelt, 2015) 
• Lack of control should be monitored to ensure increased automation in an ML system is not 
affecting acceptance as predicted in the ‘Lack of Control Theory’ (Weyner, Fink, & Adelt, 
2015) 
• To measure trust it is essential to consider extraneous attributes such as opinions of, and 
predisposition to trust technology (Weyner, Fink, & Adelt, 2015) (Lee & Katrina, 2004) 
• User errors due to poorly designed HMI can result in lower trust that the system will 
achieve a desired task  (De Vries, Midden, & Bouwhuis, 2003) 
• Reliability of reported trust in a system can be influenced by the users’ bias (De Vries, 
Midden, & Bouwhuis, 2003) (Dzindolet, Pierce, Beck, & Dawe, 2002) 
• Communication of errors and full disclosure can increase trust in the system (Mazor, et al., 
2006) (Mazor, et al., 2004) (Schwappach & Koeck, 2004) 
• Trust should be assessed according to the following criteria – ability, integrity and 
benevolence (Mayer, Davis, & Schoorman, 1995) 

 
4. Discussion  
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Previously in ML systems, recent user interaction alone was thought to be the sole effector 
and descriptor of routine, where Figure 2 is based on a static routine. However, the literature 
review has highlighted how ‘routine’ is far from being a static entity and it is constantly being 
changed and impacted (Cohen, 2007). To understand the extent of the flexibility and non-
static nature of routine a diagram has been created highlighting the most relevant impactors: 
 
 
 
 Figure 3 – Impactors on routine 
With the information gleaned from the literature review (as summarised in the previous bullet 
points) it is possible to revisit and develop Figure 1 and Figure 2. In line with the literature 
and considering the multi-dimensional impactors of routine (shown in Figure 3) it appears 
that the goal of reducing learning time and increasing accuracy may not achievable through 
the linear method adopted in Figure 2. This paper adopts and describes a human factors 
approach to ML to enhance the previous models, including taking reference from a multi-
disciplinary selection of sources which consider human-centred design. Where commonly 
ML technology is focused heavily on just the system capabilities and algorithm development, 
this approach looks to understand how the human can play a part in development of such 
systems. Many ML projects have previously overlooked the human, as an effector and 
resource for system development and as stakeholder in the development of ML and 
autonomous technology – where ML has previously been a computer science dominated and 
lead area of study. 
Previously, Figure 2 showed a linear process of interaction, learning and ‘mimicking’ routine 
through automation. It is now clear that this is a single track approach to learning about 
routine and although such methods may have sufficed in previous ML projects, in abstract 
domains, applying the same approach to an automotive application is sub-optimal. 
Considering a human factors approach in implementing ML in a car one must consider a 
human-focused system which can improve and increase the facilitation of knowledge transfer 
between the user and system. This information transfer can take place though multiple 
streams such as user interfaces, self-programming, observation of interaction, contextual 
information gathering, connected cars and information sharing etc. The literature has shown 
how this has been achieved in other sectors and as such there is good evidence for its utility 
and a good starting point for further automotive focused research. In conclusion of the 
literature review and critique of the two models a new framework is proposed for a ML 
system’s ‘learning phase’ (Figure 4): 
 
 
 
 
 
 
 
 
 
Figure 4 –Proposed framework for a machine learning system 
The top left of the framework shows the ‘Human’ side where actual routine (a condensed 
version of that which is shown in Figure 3) is held. The grey arrows describe the possibility 
for communication of this routine between the human and the system. Examples in the 
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literature (see (Das, Cooke, Bhattacharya, Heierman III, & Lin, 2002)) on how to achieve this 
pointed towards user interfaces, notifications and self-programming. Communication can be 
utilised to gain information about the user’s routine, confirm system status and also query 
learnt information to check accuracy. 
The bottom left side of the framework represents the ‘Vehicle’. As found in the literature - 
particularly in stock market modelling (see (I Know First, 2016)), it is possible to store a 
‘knowledge base’ of known entities about, or in relation to patterns, interactions and/or 
features. This information is multi-dimensional, can be learnt over time and is based on facts, 
knowledge and external/historic data. Figure 4 shows also how the knowledge base is 
transferable and shareable between different systems/vehicles. This knowledge base can be 
used to both inform the system of likely routines/patterns (based on historical data, shared 
data from other users, information about the surroundings, statistics and likelihood 
correlations etc.) and also help determine whether observed interactions are likely to be 
representational of a routine, or a one-off event that is not useful. This information can feed 
into the machine learning algorithm (as shown by the green arrows) to help inform the 
predictive model based on stored, connected and shared knowledge.  
The red dashed vertical lines represent the beginning and end of the learning phase. The first 
stage of this learning phase must be - ‘presumption that user has routine’. The system cannot 
know, at the beginning of the process, what the routine of the user is with each feature. Two 
further information streams are used to inform the ‘machine learning algorithm’. These 
information streams are drawn as black arrows and represent ‘processed based learning’ and 
‘contextual data’ (or context based learning): 
Process based learning is a method of collecting data over time to build an understanding of 
a routine. Figure 2 shows one such method of process based learning through the monitoring 
of user interaction. The literature review showed how ML systems should utilize multiple 
streams of information/data collection. The literature pointed to a few options on how to do 
this including collecting data through an HMI, inferring usage through monitoring of a user’s 
schedule and engagement with other devices and seeking information about the user’s intent 
or reasons for activating features  (see (Rashidi & Cook, 2009) and (Domingos, 2012)). 
Contextual data is a level of learning focused on the contextual factors that influence a 
person’s routine. These aspects have been previously discussed through terms such as ‘start 
up triggers’ in the literature (Rashidi & Cook, 2009) and account for independent factors that 
will (possibly be) unique for each feature. Through collecting contextual data about a user’s 
routine the system can both identify possible start up triggers for routine interaction and also 
learn information about the user’s requirements for a feature in relation to contextual 
information (considering time, location, vehicle occupants, purpose of driving, work day vs 
holiday etc. and many other factors). 
In accordance with the literature, some streams of information will be more important than 
others. This ‘hierarchy’ of importance is represented in Figure 4 by thickness of arrows and 
shows how some information sources are more useful or more reliable than others.  
It is important to note that the proposed framework in Figure 4 only accounts for the learning 
phase and does not consider the later activation stage or automated stages, and provides an 
explanation of how the learning phase may be shortened and activation accuracy could be 
increased. To this end, further research would be required in order to extrapolate this further 
into the automation stage. It is however recommended and expected that learning continues 
throughout the automated phase to account for changes in routine over time.   
If the framework depicted in Figure 4 is properly implemented it is believed that the timeline 
shown in Figure 1 could be affected as the time taken to reach activation could be sooner and 
the strength of the information gathered in the learning phase can ensure accuracy in 
activation.  
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5. Conclusion 
 
Through a review of current literature and the development of a modified ML framework; 
methods of improvement for current systems for machine learning have been highlighted. 
The success of the method proposed in this paper (see figure 4) for decreasing learning time, 
improving accuracy and managing trust/acceptance is untested and as such, no conclusion 
can be made yet as to its effectiveness. However, the literature suggests the key to speeding 
up learning time and improving accuracy does lie in the facilitation of information transfer 
between user and vehicle. What’s more, through implementing the recommendations for 
increasing trust and acceptance also, it is hoped future ML projects can ensure a positive 
impact on its current users and gain longer term benefits for the OEM and their future 
features. 
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