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SUMMARY  

Deep learning-based approaches have recently received much attention and managed to accurately 

capture variance characteristics in the Electroencephalography (EEG) signals. In this paper, we aim 

to classify the subject’s mental workload (MWL) level from EEG signal by using deep learning 

models named Stacked Gated Recurrent Unit (GRU), Bidirectional GRU (BGRU), BGRU-GRU, 

Stacked Long-Short Term Memory (LSTM), Bidirectional LSTM (BLSTM), BLSTM-LSTM and 

Convolutional Neural Network (CNN). The classification was performed on a publicly available 

mental workload dataset, STEW. Our encouraging results show the potential of deep learning 

models for MWL level detection.   
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Introduction 

Mental workload (MWL) has been considered as a crucial factor for underlying human 

performance, particularly in a complex working environment, since it relates to task performance, 

vigilance, situation awareness, and human capability to handle emergency events (Fallahi et al., 

2016). Therefore, it is essential to capture this phenomenon in real-time. In the Neuroergonomics 

area, researchers have been tackled this issue by employing neurophysiological metrics to evaluate 

brain functions in response to work (Mehta and Parasuraman, 2013). EEG is one of the most widely 

used neurophysiological signals for indicating a subject’s brain electrical activity in response to 

cognitive stimuli and to predict the MWL status effectively (van Erp et al., 2015). However, 

decoding MWL levels from EEG signals is a difficult task. Recently, machine learning techniques 

have been received much attention to capture variance characteristics in the EEG signals and 

classify MWL levels accurately (Jeong et al., 2019).  

In this paper, we aim to classify the subject’s MWL levels from EEG signals, using an available 

dataset named STEW (Lim et al., 2018). The EEG signals were collected from 48 subjects (all 

males) via 14 electrodes, sampled at 128 Hz. The participants were asked to perform the 

Simultaneous Capacity (SIMKAP) multitasking activity. The signals have been recorded in the 

resting state and the working state. During resting state, subjects sit on the chair for 3 min with their 

EEG being recorded. Then, in the testing state, subjects completed a SIMKAP task, and only the 

final 3 min of the recording was used for analysis. After each segment of the experiment, subjects 

also estimate their workload status using subjective measures, i.e. self-report questionnaires on a 

one to nine scale. The nine-point rating scale has been further categorised into three MWL levels; 1-

3 as low, 4-6 as moderate and 7-9 as high. To perform classification, we applied several deep 

learning models as follows: stacked GRU, BGRU, BGRU-GRU, stacked LSTM, BLSTM, BLSTM-

LSTM (Nagabushanam et al., 2019) and CNN model (Qayyum et al., 2018). 
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Data Preprocessing  

Since the EEG signals can be easily contaminated by undesired noise (artefact), an automatic 

independent component analysis based on ADJUST (ICA-ADJUST) (Mognon et al., 2011) was 

performed to remove the artefacts components. This algorithm has been proved to provide the most 

effect on model performance in this dataset (Kingphai and Moshfeghi, 2021a).  

Feature Engineering  

In the machine learning area, feature extraction can help us to save a huge amount of time and 

resource from unnecessary calculation features (Murakami and Kumar, 1982). Therefore, to capture 

only relevant EEG signal characteristics, we perform feature extraction by computing a set of 

features that can be broadly classified into four groups: frequency domain, time domain, non-linear 

domain and linear domain. In the frequency domain, we calculated signal power for each channel at 

five well-known Power Spectral Density bands, which are Delta (0.5–4 Hz) Theta (4–8 Hz), Alpha 

(8–12 Hz), Beta (12–30 Hz) and Gamma (30–100 Hz). While Mean, Standard deviation, Skewness 

and Kurtosis were extracted for time-domain features, the Autoregressive coefficient (AR) with p is 

set at six (Zhang et al., 2017) was calculated in the linear domain. Finally, an approximate entropy 

(ApEn) and Hurst exponent (H) is treated as non-linear features. In this study, we took a sliding 

window with a length of 512 sampling points (4 sec) and a shift of 128 sampling points (1 sec) (Lim 

et al., 2018). It means that each feature was calculated by using 512 samples, with 384 of them 

overlapped. For the purpose of extensive usage in the previous study (Chakladar et al., 2020), we 

then choose PSD alpha, PSD theta, skewness, kurtosis, ApEn, and H features as the optimised 

feature set of the STEW dataset in this scenario. Eventually, this has led us to have 84 (14 × 6) 

features extracted from all 14 channels. Additionally, we also performed feature standardisation 

before further analysis by Fscaled (Buscher et al., 2012).  

Classification and Model evaluation  

In this study, we performed the classification in two tasks; Task one: resting vs working state and 

Task two: low vs moderate vs high MWL level. As the EEG signals have been measured over a 

period of time so, the signal can be considered as time-series data. Consequently, we trained our 

deep learning models using a 5-fold time-series cross-validation (Kingphai and Moshfeghi, 2021b). 

Table 1: The accuracy of the deep learning models’ prediction of MWL level classification 

Task Stacked GRU BGRU BGRU-GRU Stacked  LSTM BLSTM BLSTM-LSTM CNN 

one 93.403 90.833 94.306 94.375 91.181 94.753 91.250 

two 82.060 79.491 82.962 83.032 79.838 77.754 79.907 

 

Results and Conclusions  

Table 1 shows the accuracy of our models. Our findings reveal that in Task one, BLSTM-LSTM 

provides the highest accuracy of 94.753%. While in Task two, the BGRU-GRU is the best model 

providing a classification accuracy of 83.032%. We also observed that the bidirectional model did 

not contribute much to the classification task; this might be because of the training strategy of the 

bidirectional model. To train such a model, we have to input data from both the past and future to 

feed the model in forwarding and backward directions (Schuster and Paliwal, 1997). However, we 

do not have a future value of time series for the present prediction time in real-life scenarios. Hence, 

as a future study, we aim to tackle the problem of how to perform a bidirectional model in time-

series data. Our positive findings contribute towards better MWL level detection models from EEG 

signals in real-time and, in turn, enhance human performance in their tasks. 
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