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ABSTRACT 

In the field of swarm robotics, human factors research is deficient. Human-swarm interaction, the 

process in which humans work with collections of unmanned and autonomous aerial vehicles 

(UAVs) to conduct activities, require an operator to track and manage vast numbers of robotic 

agents. Due to increasing complexity in communication requirements, visualising a swarm is 

challenging and requires usable visualisation methods that do not detract from user-interpretability 

and swarm transparency. This study explores two initial swarm-displays for swarm geographical 

coverage and density – an individual point display, and a heatmap display. 100 users viewed a 

simulation of each display, provided subjective usability and acceptance ratings, and gave their 

display preferences related to eight contextual factors related to time constraints, swarm size, 

communication-constrained environments, displaying coverage and motion, time-criticality, error 

detection and transparency. It was found that heatmaps improved usability and acceptance, and 

were preferred for displaying coverage and motion, and when UAV numbers are high or when time 

is limited. Individual point displays, although being overall less usable, acceptable, and preferable, 

were still deemed as being a useful tool for detecting errors in swarm operation. It is therefore 

concluded that aggregated data displays are a promising display method for visualising swarm 

coverage and density. The study is limited due to participants not being able to interact with the 

displays, therefore further research is required to further test the effects reported in this study. 
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Introduction 

Autonomous robotic swarms - collections of unmanned autonomous vehicles (UVs) working 

together with a unifying purpose - promise to enhance remote operations where human activity is 

restricted (Schranz et al., 2020). Individual agents within these swarms have access to local 

information only, requiring a network of communication to build a global picture of the situation. 

Robotic swarms are currently or are expected to be used in a variety of domains such as agriculture, 

search & rescue, warehouse operation, military scenarios, environmental monitoring, and space 

exploration (Schranz et al., 2020). Further applications of swarm robotics could also aid in 

agricultural pest-control and medical applications such as targeted drug delivery (Dorigo et al., 

2020).  

 

There is high potential for a distributed multi-agent network to autonomously learn, adapt and 

conduct tasks dynamically in-line with an overarching objective, allowing robotic swarms to be 

amongst one of the most world changing technologies currently in development (Patil et al., 2013). 

Noted by Saffre et al. (2021) human factors enquiries into robotic swarms are currently in their 

infancy. 
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Although sharing many similarities to their single and multi-UV counterparts, human interaction 

requirements for robotic swarms differ due to several factors. For example, robotic swarms 

represent collections of lower complexity agents at a greater number and can reach numbers into the 

thousands (Roundtree et al., 2018; 2019). The move from individually operated multi-UV platforms 

to those of greater numbers of autonomous agents is challenging, as the ability for a human operator 

to manage each drone individually becomes less feasible as the number of UVs increase (Olsen & 

Wood, 2004). In-line with the ‘fan out hypothesis’, when being controlled individually, the ability 

to control a collection of UVs plateaus at between 4 and 12 agents – dependent on task parameters, 

how autonomous and how reliable the system is (Olsen & Wood, 2004). For swarms in greater 

numbers, aggregated dataflow, and large-scale supervision of swarm behaviour is required to 

maintain operational standards. Due to this, a human-operator is met with the challenge of trading 

off attention to individual drones in favour of overall swarm performance (Kolling et al., 2015). 

Under these circumstances, adding additional agents to the swarm does not contribute much 

additional cognitive complexity, as the human-operator is able to treat the swarm as a single entity 

(unless splitting the swarm up to be assigned to different tasks/locations). 

 

Display methods, therefore, require an aggregation of data to communicate overall swarm state, or 

risk greater levels of complexity. As noted by many key automation researchers, poor feedback on 

autonomous agent behaviour and intentions can lead to increased errors (Norman, 1990) and a 

reduction in trust (Lee & See, 2004; McBride et al., 2014). Due to the move towards more 

aggregated, overall display methods of swarm behaviour and task processing, a trade-off should be 

made between trust, workload, and usability when swarms of collective individuals are being 

operated. Operators who wish to manage the tasks or analyse data being communicated by the 

swarm will need quick and efficient ways of building and/or applying pre-existing mental models 

about swarm state and current performance. 

The challenge for human-swarm specialists is the relatively low availability of published works in 

human-swarm interaction research, and the limited capacity to test swarm robotics at high scales. 

This is partly due to the relatively early stage of artificial intelligence and machine learning 

development, as well as financial cost (Meshcheryakov et al., 2019; Outay et al., 2020). Further, 

there are few domains that can be learned from, as autonomous agent research has typically focused 

on singular physical entities within human-agent interaction (e.g., autonomous automotive vehicles, 

automation in aviation; Billings, 2018; Clark et al., 2019).  

A major challenge for the development of swarm representations is how to display the swarm’s 

coverage over geographical space (Kolling et al., 2013; Vasile et al., 2011). Due to multiple agents 

being present to confirm or deny the information model of the swarm, UV density is indicative of 

search efficiency and accuracy (Hamann & Reina, 2021). It is therefore critical that a human 

operator made aware of where the swarm is operating, as well as how many agents are operating in 

each location. This is to ensure that the swarm can be allocated across search areas more optimally 

and allow the system to make use of the human-operator’s ability to process contextual factors 

related to the task and situational parameters (Hussein & Abbass, 2018). Location data should be 

provided in an accessible and usable format, so that operators are given a global picture that is both 

usable and does not require excessive attentional resources to process. It follows that aggregated 

data across agents may provide benefits at all levels of autonomy where a human-operator is 

present, whether the human operator is a supervisor (i.e., managing high-level plans and objectives) 

or an operator at a micro-level (i.e., issuing lower-level commands related to swarm movement and 

tasking; see. Hussein & Abbass, 2018). 
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To explore how human-swarm interaction may be enhanced or hindered by favouring aggregated 

density displays, this study examines the potential trade-offs for displaying individual Unmanned 

Aerial Vehicle (UAV) displays, representing each drone individually and aggregating UAV position 

and density via a heatmap based on density and position relative to their neighbours. It is 

hypothesised that heatmap displays would favour greater scalability of UAV numbers due to the 

fan-out hypothesis (Olsen & Wood, 2004), and therefore higher usability. However, this may come 

at the cost of reduced trust or transparency (due to less information; Norman, 1990; Lee & See, 

2004) and result in lower user acceptance and decreased preference to use these displays. 

Additionally, contextual factors such as swarm size, time-pressure, communication-constrained 

environments, and the detection of errors may influence which display users prefer. 

Method 

Design 

Two displays were developed to represent 50 UAVs in 2D space (see figure 1.). The left display in 

figure 1 shows individual UAVs represented by moving black dots. The right heatmap display 

shows a collective heatmap of UAV density (purple = lowest density, yellow = high density). Every 

agent update within each pixel-space was coded as dense (yellow), which decreased over-time as 

the simulation progressed (towards purple). The heatmap was presented at a medium reading 

threshold, meaning that a collection of closely neighbouring UAVs would be required to appear on 

the heatmap, defined by this threshold. Further developments of this display will allow users to 

manually select thresholds for density to adapt their displays to the task they are conducting. 

Displays representing swarm coverage were recorded in video format lasting 35 seconds. To mimic 

real-time agent updates in-line with connectivity and swarm dynamics, location data were provided 

only if the agent was able to send data to the operator. This was dependent on connectivity with the 

operator’s base-station and with other agents in the swarm. This was fixed for both conditions. 

 

Figure 1: coverage display methods. Left = individual drone point display. Right = heat-map 

representing coverage. Images do not represent the same underlying truth due to random variance in 

simulation parameters 

Participants 

100 participants (62F, 37M, 1 Non-Binary) took part in an online visualization evaluation. Ethical 

approval was given by the University of Southampton ethics committee (ERGO number: 

66360.A1). 
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Procedure 

Participants accessed the study via Microsoft Forms where they were asked to fill out a consent 

form prior to being presented with an introductory video. Participants were given the following 

introduction: “You, as an operator, are going to observe the behaviour of a swarm of drones that are 

flying around. You don’t have access to all drones (i.e., global communication is not available): 

operator and drones can only communicate with their neighbours, drones move around in the area, 

the operator receives updates from passing-by drones. When two agents move in a close proximity 

of each other, they exchange information about where other agents were last seen. Agents store the 

most recent locations of other agents. It takes longer for some agents to send/receive updates due to 

loss of connection with the rest of the swarm. We designed a set of questions to compare the 

usability of two visualisation methods. You are an operator, and your goal is to observe the swarm. 

You will see two videos and you will be asked to answer a set of questions for each display.” 

 

Participants were then introduced to each display method sequentially, and given the following 

descriptions: 

• Display 1 – point display (individual drones): “This is how the operator sees the swarm in 

the first method. Drones are shown as points. With each update that the operator receives, 

the new location of agents appears or updates within the map. All agents are constantly 

moving around – drones that are not moving are ‘lost drones’ and you still see them where 

they were last observed.” 

• Display 2 – heat-map display: “The concentration of the swarm is shown in the heatmap. 

Instead of individual drones, the whole swarm is shown as a ‘cloud’. With each update that 

the operator receives, the new concentration of the swarm appears or updates in the map.” 

 

Participants then watched a video of a swarm display showing individual UAVs, followed by a 

heatmap to represent swarm coverage. After viewing each video, participants were asked questions 

from the System Usability Scale (Brooke, 1996) and the System Acceptance Scale (van Der Laan et 

al., 1997) to measure how easily each could be interpreted. After watching both videos, participants 

were then asked to provide their preferred display given a variety of contextual factors: 

 

• Which display is more practical to use with a larger swarm size? 

• Which display is more practical to use in communication-constrained environments? 

• Which display helps you to understand the swarm's motion & coverage of the area? 

• In a time-critical situation, which display would you use? 

• If time was not a concern, which display would you use? 

• Which display helps in detecting errors in the behaviour of the swarm? 

• In which display was the swarm's behaviour more transparent? (i.e., the behaviour was 

clearer & more predictable) 

• Which method would you prefer to use for controlling the swarm? 

 

Analysis 

Preference responses to the contextual factors outlined above were analysed using eight chi-square 

goodness of fit analyses, corrected using the Bonferroni method (corrected α = .00625). The system 

usability scale and system acceptance scale responses were analysed using two repeated measures 

ANOVAs. 
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Results 

Responses to the eight questions prompting participants to provide their preferred display, given a 

contextual factor, were analysed using chi-square goodness of fit tests (Lancaster & Seneta, 2005). 

The alpha level was corrected using the Bonferroni method, according to the number of analyses 

conducted (Shaffer, 1995). The chi-square goodness of fit analyses showed that heatmaps were 

preferred when a larger swarm is being displayed, to display motion and coverage, and when time 

was a critical factor to task success (see Table 1). On the other hand, individual drone displays 

would be preferred for detecting errors in the swarm. There was no significant difference when 

communication would be constrained, when time was not a critical factor of task success, for being 

more transparent with the operator, and for controlling the swarm. 

  

Table 1: Frequency of preferences and chi-square results for each contextual factor 

Contextual Factor Individual Heatmap χ2 p 

Larger swarm size 21 79 33.64 .001* 
Constrained communication 43 57 1.96 .162 
Displaying motion and coverage 31 69 14.44 .001* 
Time critical 28 72 19.36 .001* 
Time non-critical 43 57 1.96 .162 
Detecting Errors 74 26 23.04 .001* 
Transparency 44 56 1.44 .23 
For controlling the swarm 37 63 6.76 .009 

Note. Bonferroni Corrected α = .00625    * = p < .00625 

 

Two repeated measures ANOVAs (Girden, 1992) were conducted to identify whether coverage 

display method had an effect on System Usability Scores and System Acceptance Scores reported 

by participants. The analyses found a significant effect of display-type on usability scores (F(1,99) 

= 22.53, p < .001, ηp2= .185) and acceptance scores (F(1,99) = 29.89, p < .001, ηp2 = .232) 

indicating that the heatmap display method had a greater level of usability and acceptance amongst 

participants when compared with displaying individual UAVs. 

 

 

Figure 2: Bar graphs to show usability and acceptance scores for individual point-display and 

heatmap display. Error bars = 95% Confidence Intervals 

Discussion 

When visualising high numbers of individual robot agents, effective aggregated data displays may 

aid in collective human-swarm decision making (Kolling et al., 2015; Olsen & Wood, 2004). Due to 

a reduction of information, displaying swarm coverage through an aggregation like a heatmap 

(displaying swarm density) vs individual point-displays (where each drone is represented) may have 

trade-offs in-terms of their functionality and how they support operator usability, acceptance, and 
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in-turn, situation awareness and trust (Lee & See, 2004; McBride et al., 2014; Norman, 1990). This 

study identifies operational contexts that may have an effect in whether it’s more appropriate to 

provide aggregated coverage displays, and whether users perceive this form of representing a 

swarm of 50 drones to be preferable than displaying individual agents. 

The key-findings of this study were that heatmap displays were rated as being overall more usable 

(i.e., effective, efficient, and satisfying; Brooke, 1996) and acceptable (i.e., useful and satisfying; 

van Der Laan et al., 1997) to users than individual point displays, showing that users find heatmaps 

for swarm coverage to be easier to interpret and would likely use this type of display on a regular 

basis. Overall, heatmaps were rated as being preferable for displaying swarm coverage and motion. 

Contextual factors appear to contribute to these preferences. For example, heatmaps appear to be 

preferable when time constraints are high. Due to this it can be assumed that efficiency, one of the 

sub-categories of usability alongside effectiveness and satisfaction (Frøkjær et a., 2000), is likely to 

be a contributory factor towards participants’ usability ratings. Participants often stated that 

heatmap displays as being easier to visualise, meaning that this form of display is likely to be higher 

in learnability and operability (Abran et al., 2003). Point-displays on the other hand were stated as 

being harder to visualise, likely due to the less efficient nature of displaying a non-connected 

network of individual entities. 

Heatmaps were rated as being preferable when swarm sizes are larger, supporting previous notions 

that users require a novel type of interaction to deal with swarm complexity (Olsen & Wood, 2004). 

This finding shows that aggregated data displays are scalable, and more robust to increased UAV 

numbers compared to individual point displays. These effects may be explained by the number of 

drones visualised in this study. As swarm sizes increase, heatmaps may be more resilient to an 

increase in complexity as heatmaps provide a way of visualising the swarm as a single entity. These 

effects may dissipate, or not be present in studies with fewer UAV numbers. 

Notably, there was no significant reduction in how ‘transparent’ the displays were, indicating that 

aggregating swarm geolocation data into heatmaps may not necessarily influence certain 

contributors towards the development of trust. This is likely due to the fact that users are able to 

visually represent geographical location to the same degree as individual point-displays, whilst also 

providing improvements to usability and acceptance, thus not necessarily reducing the amount of 

performance indicators (Lee & See, 2004). 

The sole contextual factor that was rated as being preferable in favour of individual point displays 

was for detecting errors. This is likely due to the difficulty in displaying swarm dropouts via a 

heatmap – either displayed as static individual UAVs that have not updated their position, or 

through more explicit displays like colour changes. Due to this finding, it is recommended that 

diagnosis tools are provided alongside aggregated data displays for situations requiring further 

diagnosis. An operator would then be able to make use of this diagnosis tool to identify whether a 

certain region or certain UAVs are experiencing connectivity or battery issues. 

It is worth noting that trust is not directly measured in this study, however, contributors towards 

situation awareness and trust (i.e., transparency, interpreting swarm coverage/motion, scalability 

and detecting errors) have been measured. Revisiting theoretical issues such as trust and situation 

awareness, this study shows that coordination is likely to improve during human-swarm interaction, 

and that these contributory factors addressed through the aggregation of geolocation displays via 

heatmaps. Further investigation is required regarding the relationship between the number of UAVs 
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and preference for heatmap displays, and the direct measurement of trust and situation awareness 

when these types of displays are utilised.  

Conclusions 

This user-study provides evidence that heatmap methods are more effective in addressing usability 

and acceptance in human-swarm interaction (see Figure 1). Swarm operators may make use of 

geolocation and density displays to improve their mental models on the locations, efficiency, and 

accuracy of swarm data processing. Further, in situations of larger swarm sizes, time-criticality and 

displaying motion and coverage, a heatmap has shown to have a higher preference amongst 

participants. Conversely, for detecting errors within the swarm, individual drone displays may be 

more appropriate. Notable limitations of this research include the omission of counterbalancing 

(due to the design of the data collection platform), which may introduce learning effects. However, 

due to the trials being relatively short, and participants were mostly naive to UV robotics, this effect 

is thought to be minor. Participants were also not able to interact with this early-stage interface, 

which may lead to additional variance in the results presented here, as task load, time-pressures, and 

overall task dynamicity will likely influence subjective report measures. Finally, further research is 

required for investigating how trust and situation awareness factors are directly influenced by these 

displays, and how further scalability (e.g., 100-1000 UAVs) may affect user preferences. 
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