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ABSTRACT 

A new dawn of intelligent machines has re-energised the concept of human-machine teaming 

(HMT) whereby humans, and autonomous systems, collaborate towards a shared operational goal. 

Across Defence, Human Factors specialists will be challenged to integrate human-autonomy teams 

into already complex systems for which knowing the functional state of human teammates will be 

critical to system optimisation. Presently, innovation in machine learning and data collection 

methods is making human cognition more available to operational settings than ever before. This 

paper overviews the state of the art in techniques for estimating human functional state from the 

perspective of designing complex military systems involving artificially intelligent (AI) agents. 

Considerations are provided for designers seeking to quantify variables such as mental workload, 

situation awareness (SA) or the level of demand upon particular communication modes, whether for 

system operation or design and evaluation. Finally, some examples of methods used in HMT 

research are presented along with a speculative look at future influences upon the specification of 

human functional state for use with autonomy in Defence.  
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Introduction: Autonomy in the future operating environment 

Intelligent machines offer new and powerful capabilities to UK Defence. Unmanned ground 

vehicles (UGVs), unmanned aircraft, intelligent assistants and interfaces are being developed for 

integration into complex systems across military domains. Human-machine teaming (HMT) is a 

concept in which humans and autonomous machines collaborate within a system to achieve a shared 

operational goal (e.g. MOD, 2018). Designers working with human-autonomy teams (HATs) face 

the significant technical and Human Factors (HF) tasks of developing and integrating the AI agents 

and optimising team performance. Considerable attention has been paid to the development of 

explainable AI so that the behaviour of AI agents may be understood, however it is also necessary 

to understand the determinants of performance and behaviour in military personnel. This paper 

presents an overview of approaches and considerations for measuring human functional state for the 

design and operation of HMT Defence systems. 

The allocation of function between humans and autonomy will be set during the design stage and 

might be fixed or, increasingly in future, change dynamically depending on the situation. The 

ability to characterise and quantify the functional state of military personnel, for example their level 

of mental workload, vigilance, or capacity for a particular interaction mode (e.g., speech, touch), 

will be indispensable to developers and critical to dynamic functional allocation aimed at 

optimising performance (e.g., intelligent selection of interaction mode and level of assistance to 

provide). Being more dynamic and ‘human’ than computers, intelligent systems need innovative 

approaches to human machine interface (HMI) design. Methodology grounded in that of human 
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computer interaction (HCI) and overlapping with the field of human robot interaction (HRI; Huang, 

2015) will need to accommodate the unique characteristics of human-autonomy teams, i.e.:  

1. Teamwork.  Complex systems will increasingly see humans collaborating with 

autonomous agents on shared goals. So, it is important to understand the impact of team-

working on human functional state and cognition, how these will be measured and how 

human data will be used within the system. The number and type of HMT members, their 

relationship (e.g., supervisory, collaborative) and operational proximity (e.g. for 

teleoperation) will need to be taken into account. 

2. Interaction. Dynamic human-autonomy teams (HATs) will require timely and accurate 

communications that don’t surprise, confuse or add workload. Knowing how cognitive 

capacity affects and is affected by tighter human-machine interaction will be important. 

Also, novel interactive technologies (e.g., cameras for gesture and eye-tracking) will need 

to integrate with novel human monitoring techniques potentially leading to convergence 

into one technology e.g., eye gaze as a control input and source of cognitive information.  

3. Operationalisation in future. The need for ecological, life-like testing of HMT design 

concepts often exceeds what can be achieved with state-of-the-art autonomous systems 

leading to use of lower cost methods such as the ‘Wizard of Oz’ in which the real world 

and autonomy can be simulated using virtual reality (VR) (Cooke et al., 2020). Designers 

must work with unknowns such as new possibilities offered by technique advancements 

and obstacles arising from the process of integration with the HAT.   

Which psychological variables are needed for use in military HMT? 

As for HCI, HMT will require bio-cybernetic systems to be able to optimise human performance 

(e.g., by keeping mental workload within acceptable levels by providing assistance at the interface 

or adjusting the level of automation (adaptive aiding/automation; Ewing et al., 2016; Scerbo et al., 

2003). Besides mental workload, other determinants of performance such as vigilance, fatigue, 

stress, attention focus and situation awareness (SA) will be of interest. Some HATs will require 

personnel to supervise unmanned machines (e.g., ground vehicles (UGVs), drones) at a physical 

distance from a battlespace in which tasks are autonomy-executed, and instead be required to 

manage and make decisions, for which they will need good SA and the ability to monitor the 

autonomy’s performance. Roy et al. (2020) propose that it will be necessary to monitor mental 

fatigue (due to long periods of focus), mind wandering and attentional disengagement (that can 

undermine SA), and in-attentional sensory impairments that could cause omissions (such as missing 

alarms). Detection of mental underload (e.g., during low demand monitoring or navigation tasks) 

may be important as underload can quickly become overload when an operator is insufficiently 

aroused, such as for an emergent threat that demands prompt action in an uncertain, possibly lethal 

situation (Young & Stanton, 2002). There is much research into human trust in autonomy, i.e., low 

trust can cause an operator to check up on an AI machine which increases their workload. Errors 

and unpredictability from an autonomous system can confuse, particularly if an operator is already 

overloaded, harming trust and system performance. Intelligent systems could also need to know a 

human’s interaction mode capacity (e.g., visual, auditory or speech) to select an available mode and 

avoid overloading any one (Heard et al., 2019). Likewise, dynamic allocation of function will need 

timely measurement of demand upon different cognitive and behavioural resources. To summarise, 

HMT in complex systems will potentially require a holistic, multimodal and multidimensional input 

of human data to supply the information needs of intelligent adaptation. 

Technical and practical challenges 

Good practise principles and method criteria must inform measurement of human functional state in 

HMT and should expect to draw upon those established within HCI and Human Factors, i.e.: 
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• Human-computer interaction should be natural, multimodal, seamless, modelled on 

cognitive science, context aware, efficient, consistent and well timed (Huang, 2015).    

• Workload measurement should be sensitive, diagnostic and unintrusive (O’Donnell & 

Eggemeier, 1986); also, sensitive to transient variations, repeatable with low variance and 

selectively sensitive to workload over other variables (Cain, 2007). 

• Psychophysiology for field-based application should demonstrate ecological validity via 

testing in life-like simulation and real-world operational settings (Fairclough, 2017). 

• System design should be human-centred (e.g., Stanton et. al., 2021). 

Technical opportunities and challenges posed by human-autonomy systems and the future operating 

environment (FOE) could require modifications to existing criteria or entirely new criteria to 

emerge. For instance, human data capture technologies may need to integrate with novel interaction 

devices, extended reality (XR) environments and innovative wearable HMIs adopted in military 

settings. Designers will need to determine the adaptive logic of the military system, to ensure its 

response to human data inputs are of an appropriate type and magnitude, and are well timed. 

However, possible restrictions upon data storage, bandwidth and processing power for personnel 

monitoring interfaces coupled with possible increases in the quantity, noisiness and dynamism of 

operational data, could overload computation and compromise the timeliness and quality of the 

human inputs. Environmental noise (e.g. sound, movement and electromagnetic) alongside physical 

challenges such as dirt and cramped space will continue to plague technology in cockpits, under-

water and land vehicles. Therefore, development of hardware and deep learning methods for robust 

classification of human functional state alongside more processing power (e.g., via quantum 

computing) will be sought. Sophistication at the level of deep learning algorithms may potentially 

afford greater simplicity at the HMI as predictive capabilities become less data-hungry and more 

efficient. Refinement and integration of personnel monitoring techniques into seamless, intuitive 

and efficient interfaces, for example by streamlining collection of human data types required for 

different purposes (e.g., health monitoring, workload monitoring and interaction) may become 

achievable from one or two, maximally rugged and minimally obtrusive, interfaces. Thus, the 

current expansive phase of technological exploration and innovation will need to be followed by a 

consolidating phase in which methods are down-selected and refined for each specific HMT setting. 

Methods for predicting human functional state: 1. Physiology and task behaviour 

Traditionally, psychological states impacting human performance, such as mental workload may 

have been measured via task performance, behaviour, subjective questionnaires or 

psychophysiology - or a combination of these. However, not all are suited to dynamic operational 

settings (i.e. questionnaires) and will have varying levels of suitability for the HMT context. The 

following paragraphs overview the state of the art in methods for capturing human functional state 

(a full review is beyond the scope of this paper). 

Physiology offers a window into cognition via cognitive influences on the sympathetic nervous 

system (SNS). Several non-invasive psychophysiological methods can detect SNS arousal due to 

task demands, e.g., electrodermal activity (EDA), blood pressure, facial electromyography (fEMG) 

and sweat hormone profiles, however many are too susceptible to physiological confounds (e.g., 

from arousal due to physical exertion) for use in an uncontrolled operational environment. 

Variability in heart rate (HRV), however, is being used for HMT concept testing and is often 

selected for applied research owing to its ability to discriminate mental workload from sources of 

physiological arousal whilst being measurable from unobtrusive wearable ECG sensors (e.g., 

Martin et al., 2019). In addition to chest straps, HR can be collected via more remote means, i.e., 

pulse oximetry sensors, cameras/webcams (that detect skin pulse via photoplethysmography (PPG) 

- tiny chromatic changes in skin due to blood flow), thermal cameras (also detect skin pulse), 
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Doppler radars, and capacitive electrodes (that detect the ECG waveform up to 40cm from the 

heart; Bousefsaf et al., 2014; Hinde et al., 2021). 

Cameras and microphones that are remote or mounted on wearables (e.g., Google Glass) can also 

capture informative data-streams via eye-tracking, facial expressions and voice: Eye blinks, gaze 

direction and pupillometry (pupil dilation) can offer insight into a range of cognitive features e.g. 

fatigue, SA, learning, strategy, attention and workload (Pignoni & Komandur, 2019). Over the last 

decade improvements in the sensitivity of everyday cameras and the application of sophisticated 

deep learning algorithms are making face and eye techniques more feasible at lower cost. For 

example, Shishov (2019) videoed facial expressions and eye gaze with an ordinary webcam during 

a lab based cognitive task then trained a combination of recurrent neural network (RNN) and LSTM 

algorithms on the data to predict mental workload. Recently UCL researchers discriminated 

workload from eye-blinks recorded with an ordinary camera by extracting time-frequency blink 

data then applying a 2D LSTM algorithm, arguing for the superiority of 2-dimensional deep 

learning over traditional time-series methods for capturing complex SNS behaviour (Cho, 2021). 

Voice recorded with a standard microphone can also be used with machine learning to quantify 

stress due to cognitive load, e.g., in pilots (Hagmüller et al., 2006).  

However, despite their unobtrusiveness, audio-visual recordings require a person to remain within 

range or must be mounted upon clothing or other wearable, and their separation from the body 

makes them especially vulnerable to environmental interference e.g. from light, sound, temperature 

or movement, making them potentially unfeasible in dynamic HMT contexts. Further development 

and application of deep learning is needed to clarify if remote data capture can yield sufficiently 

accurate, reliable estimation. 

Neurotechnologies have become portable and wearable and thus available to operational settings. 

EEG (electro-encephalography) has superior temporal resolution that can offer timely inputs of 

cognitive information for HMT. Error potentials (ErrPs) are EEG features that occur when the brain 

perceives a mismatch from expectation and have been used for many purposes, e.g.: 

• evaluation of trust in autonomy (Akash et al., 2018); 

• detection and correction of robot errors and misunderstanding of human gestures (Kim et 

al., 2017; Krol & Zander, 2017);  

• prediction of pilot auditory error for adaptive cockpits (Dehais et al., 2019); 

• detection of severity and type of system errors perceived by the human (Wirth et al., 2019).  

Other features of the EEG have been used by an intelligent system to affirm a human’s 

understanding, such that information can be re-presented when the EEG indicates a lack of 

perception (Kirchner et al., 2013). In addition, EEG and functional near-infrared spectroscopy 

(fNIRS), a recent method for detecting changes in cortical blood oxygenation, can be used to 

quantify a broad range of performance-relevant measures of cognition and affect e.g., fatigue, 

alertness, mental effort, SA and modality-specific processing such as visual or auditory (e.g., Ewing 

et al., 2016; Mund et al., 2020; Roy et al., 2020; Solovey et al., 2012).  

Neuroergonomics arguably provides a gold standard for capturing cognition, however as noted in 

Fairclough and Lotte (2020) few neurotechnologies have progressed beyond lab demonstrator 

systems to the real world. There are significant obstacles to operational deployment including signal 

variability (between participants, tasks and sessions) and noise - which can afflict the signal from 

multiple sources in operational settings (e.g., due to environment, movement, human physiology 

and psychology). In addition, head mounted sensor devices may be obtrusive, and timely to set up 

and calibrate. To overcome these challenges, machine learning methods and sensor hardware 

require further innovation combined with ecological HMT concept testing. Alternatively, the ability 
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to capture brain information makes neurotechnologies attractive for validating other methods and 

evaluating system design in more benign settings. 

In addition to bio-cybernetic approaches are those that estimate human functional state directly 

from task-related interactions with the system. For example, pilots’ flight control inputs, drivers’ 

steering behaviour and desk operatives’ keyboard and mouse use can all be used to classify mental 

workload (e.g., Martin et al., 2019; Sanchez et al., 2018). Task behaviours are potentially attractive 

for HMT due to offering a ready-integrated, machine-based data source that is both close to task 

performance and partially removed from physiological and environmental noise. However, task 

behaviour only offers a general measure of workload impact and is less suited for specific cognitive 

inferences (other than where they relate to the measured behaviour). Also, it is necessary to identify 

and validate suitable, informative system metrics which is potentially difficult for a dynamic HMT 

system still at the design stage. 

Methods for predicting human functional state: 2. Modelling and examples from HMT research 

This section provides examples of approaches to estimation of human functional state within HMT 

research. Modelling, used alone or within a multi-method approach has been used within several 

studies. HMT will require shared mental models between human and machine to allow AI Agents to 

1) identify the human mental state and 2) show a human-like understanding so they can be 

understood by humans (Huang, 2015). Models of mental workload have been used to stand-in for 

psychophysiological methods that will be integrated later on (Heard et al., 2019), and systems may 

use models of individual human operators to predict their behaviour (Nikolaidis et al., 2015). 

Models of humans’ and agents’ tasks, task interrelationships and goals can provide context for an 

intelligent system needing to diagnose operator actions or goals (Mund et al., 2020), or to provide a 

basis for concept evaluation purposes (Lashley et al., 2019). 

One approach is to combine task models with psychophysiological data. An in-flight simulator trial 

by Mund and colleagues involved an adaptive assistant using workload models and 

psychophysiology to determine the level and mode of assistance to provide to a pilot. For every task 

auditory, visual, spatial, verbal demands and visual, verbal and manual interactions were modelled 

along with eight vectors of estimated load (based on Multiple Resource Theory; Wickens, 2002), 

which the assistant could use to estimate pilot load. Based on their work, the authors proposed that 

psychophysiological measurement was preferable where task loads could not easily be modelled, 

e.g. for image scanning tasks, and that psychological influences from a complex environment could 

be captured by recording multiple psychophysiological data streams that can be merged into a 

single robust measure of workload that can be used to supplement and ‘tune’ the modelled load 

parameters (Mund et al., 2020). A combined approach has also been used by NASA, i.e., 

algorithmic classification of physical and cognitive workload and task modelled estimations of 

speech, visual and auditory load were used as inputs to an AI agent tasked with normalising human 

workload by manipulating the functional allocation and interaction mode. The NASA team used 

modelling to establish a ‘ground truth’ in their research but propose that physiological measures 

should ultimately be used for all types of workload (Heard et al., 2019). 

The US Air Force is also using psychophysiology within HMT. For example, eye-tracking was 

included with subjective measures of mental workload, SA, stress, performance and trust in the 

Autonomous Flight Testbed (AFT) to help understand to what extent F-35 pilots supervising 

multiple unmanned F-16s could fly their aircraft, supervise the F-16s and complete their mission 

(Holec et al., 2020). Head movements and gaze have been used to measure trust in autonomy by the 

DARPA Air Combat Evolution (ACE) program for pilots performing dog-fighting battle 

management while supervising an AI programmed to execute combat manoeuvres (DARPA, 2021). 

Also, integrative technology that allows multimodal human monitoring to be integrated into a 



Ergonomics & Human Factors 2022, Eds N Balfe & D Golightly, CIEHF 
 

 

complex system for HMT evaluation has been developed by the University of Iowa Operator 

Performance Laboratory (OPL) (Martin et al., 2019).  

Future considerations and conclusion 

Human Factors specialists working with complex systems in Defence and across industry will need 

to anticipate future trends and influences impacting how human functional state is determined for 

HMT purposes. Could aspects of the FOE such as new technology and hybridized warfare affect 

human monitoring needs? How will HMT systems and the interactions between humans and AI 

agents evolve as they become increasingly familiar, e.g., will humans learn to adapt their behaviour 

based on system feedback? Will the principle of human-centred design need to be accompanied by 

or fused with ‘agent-centred design’ to design for human-like AI agents? Also, how will public 

concerns about some technologies, such as invasive methods of human monitoring that involve 

implanted sensors (not used within UK Defence or discussed in this article), or the use of powerful 

AI algorithms to access (private) mental states, and more general concerns about AI agents, impact 

legislation around the use of human data and autonomy? Research and development in this exciting 

field is likely to pose more questions as well as answers. 

This paper has presented an overview of methods and considerations for the quantification of 

human functional state in complex HMT systems. It concludes -  

1. Accurate classification will potentially require a multi-method, multi-modal and multi-

dimensional approach with supplementation from environmental and task data.  

2. An ecological focus on specific HMT scenarios will be necessary to down-select, integrate 

and refine methods used. 

3. Techniques should be selected according to how their strengths and limitations enable 

them to meet the needs of different stages of the design lifecycle.  

4. Criteria and principles for human functional state estimation and HCI design will apply but 

may require extension for application to HMT contexts.  

5. Deep learning, hardware and methodological innovation will enhance capability in the 

determination of human functional state in future. 
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