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ABSTRACT 

Design goals guide design efforts but complex systems can lead to designers’ intentions being 

eclipsed. This paper’s proposition is that sociotechnical systems design offers scope for improved 

reliability and is built on three features of current design practice. First, design teams seek 

cooperative cognition to work together but inadequately understood outcome scenarios can 

impoverish joint understanding. Second, design team collaboration is bounded by innate 

psychological biases, which can spoil design decisions. Third, some views of risk in design thinking 

suffer from a limited conception of uncertainty and its influence. These constraints in design 

practice are examined (referencing the reach of Artificial Intelligence as one example design 

domain) and how such constraints may be addressed in design practice. 
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Introduction 

The French expression feu de joie (fire of joy) describes a military celebration when a regiment fire 

one shot after another, in close succession like a drum-roll. “Symbolically, the fire of joy is a 

reminder that the regiment’s collective power relies on the individual, and vice versa” (James, 2020, 

p.1). 

That individual and group performances are interwoven is both a strength and weakness of design 

thinking and offers fertile ground for enquiry. This paper focuses on one example of complexity in 

sociotechnical design, Artificial Intelligence (AI), to examine challenges and approaches to improve 

design practice in general for other sociotechnical systems. These sections follow: AI as an example 

domain for design enquiry; cooperative cognition in design teams; cognitive bias; and challenges 

with uncertainty. Conclusions will be described to inform design policy and values. 

AI as an example for design enquiry 

The notion of complex sociotechnical systems such as AI eclipsing their designers’ imaginations is 

a reality. With the example of AlphaGo (DeepMind, 2021a), the design team harnessed uncertainty 

to their advantage. AlphaGo is an AI designed to play Go, a board game involving two players. Go 

offers an unimaginably large number of play permutations within a simple layout (black and white 

stones placed on a grid board). The object of the game is to occupy more territory than an opponent 

by bounding spaces using the stones.  

In 2016 AlphaGo defeated the world champion Go player, Lee Sedol. AlphaGo won four of the five 

games and game two underscored its emergent capability. During game two AlphaGo made a 

surprising move, now referred to as ‘move 37’. The move was unexpected, unconventional, and 

astonished Lee Sedol and the entire DeepMind design team. AlphaGo had exercised self-learning, 

innovation and creativity that exceeded the designers’ imaginations. Since 2016, DeepMind has 

developed an AI called AlphaFold (DeepMind, 2021b) to assist with the problem of protein folding 
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which has delivered many medical research benefits, so AI efforts and results should not be thought 

of only as games.  

AI development is careering in both senses of the word, and its reach and impact will be felt in most 

aspects of society including weapons’ target decision-making in the form of Artificial General 

Intelligence (AGI). AGI “offers enormous benefits for humanity, yet it also poses great risk” 

(McLean et al, 2021, p. 1). Some sociotechnical risks result from selective data sets for example, 

such as when algorithms that instruct AI show a strong male bias (Winterson, 2021). 

Many of the myriad outcomes from AI design decisions are the result of design teams’ cognitive 

processes, coupled with the unexpected and unconventional behaviours of the system as evidenced 

by AlphaGo and exemplified by move 37. This sociotechnical uncertainty is the focus of the 

following sections, which are consolidated in a policy and value discussion in the conclusion. 

Cooperative cognition 

Design teams cooperate to build joint understanding, but this can be impoverished by inadequately 

pictured sociotechnical outcome scenarios. It is useful first to recognise the basic units of design 

team cooperation, namely groupwork and teams.  

A work group can be defined as a set of more than one job holder in some organisational unit that 

may be permanent (Davis, 1969). Teamwork may come and go, existing only for as long as is 

required for a particular task (Kinlaw, 1991). Team performance emerges when tasks cease to be 

disjunctive and become more conjunctive or additive (Steiner, 1972). Disjunctive tasks are 

performed independently by group members and reflect individual choices among alternatives. 

Conjunctive tasks are performed together. The kind of task performed influences or even 

determines group performance and team development (Hackman and Oldman, 1980). The more 

complex the task, then often the more conjunctive, and hence cooperative. 

Why do people cooperate? Holand and Danielsen (1991) suggest individuals make decisions based 

on a construction of their internal reality, and part of this construct includes cooperating agents, 

which are accommodated into a mental model or construct if the individual’s self-interests are 

satisfied. The basis of a mental model or construct is developed by others such as Minsky (1974) 

and Johnson-Laird (1987) and illustrated by Hudson’s account of self-determinism in committees.  

Hudson (1983) suggests there are colonies of selves in each of us – such as the tactical, moral, civic, 

and capricious - and these are deployed to determine the internal construct used to identify, 

evaluate, and act on decisions. Justification becomes a process of developing the appropriate 

construct to accommodate the required decision. If the construct development process does not 

produce a conflict, the decision does not compromise the decision-makers.  

A group exhibits “consensual rationality” (Lehrer, 1987, p. 87) when a group’s members iterate 

their individual estimates of the likelihood that some proposition is true and then weigh them in 

terms of their various degrees of respect for one another (which ultimately leads them to a limit or 

consensual probability). Lehrer comments that the scheme should reliably model actual group 

activities, since “under expected conditions personal probabilities will coincide with consensual 

probabilities, and consensual probabilities will coincide with the truth” (Lehrer, 1987, p. 107). 

Situation awareness is a necessary aspect for individual task-oriented situations. The individualist 

view of situation awareness is expanded when individual awarenesses jigsaw together at the 

system’s level to yield distributed cognition. Distributed cognition describes cognition that 

“transcends the boundaries of an individual actor because the system’s aggregate behaviour can be 

highly complex and adaptive” (Stanton, Salmon and Walker, 2019, p. 19).  
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Complex high-level functioning emerges from the combinations of low-level mechanisms and at its 

best is a cooperation between individuals and other artefacts, described here for design thinking as 

cooperative cognition, and is proposed as a vital component of design teams. These factors 

emphasise the need for group support design technologies that assist with making design values and 

principles explicit. Sound cooperative cognition also encourages a team’s awareness of innate 

biases and the transparent treatment of uncertainty. 

Individual and group biases 

Heuristics are mental ‘rules of thumb’ that serve as useful everyday cognitive processes that bias 

our thinking to inform speed-error trade-offs when time is short. In this way, heuristics are useful 

for many decisions – but not all decisions. They are shorthand mind-sets that have been useful in 

“the environment of evolutionary adaptedness” (Bowlby, 1969, p. 58), but can be poorly suited to 

contemporary workplace design and decision-making. 

Some common biases (Kahneman and Tversky, 1974) based on heuristics include: availability of 

information; representativeness (including how problem characteristics bias judgment on 

probability estimates); serial positioning effects (e.g., a tendency to recall first (primacy) and last 

(recency) items); anchoring and adjustments (e.g., an initial estimate sways judgment); and affect 

(e.g., when messages framed to evoke emotion can be biased either through dread or comfort). 

If design team collaboration is bounded by innate psychological biases and sometimes these biases 

are features of group behaviour, such as groupthink (Janis, 1983), then organisational errors can be 

characterised as “upstream or latent errors acting in concert to magnify local individual errors” 

(Reason, 1995, p. 1708). Organisational errors include transport disruptions due to the commercial 

separation of maintenance from operations, and institutionally as the mismanagement of epidemics. 

So bias and errors occur at various levels of sociotechnical systems (e.g., individual, group, 

organisation, and institution) and mostly in concert. System errors, after all, are human-induced 

design errors, and so the natural foibles and quirks of designers (at various levels) are likely to be 

reflected in designed system performance. Reports of such systemic bias include face respirator 

fitting “pass rates that are especially low in female and in Asian healthcare workers” (Regli et al, 

2021, p. 1), “racial bias in pulse oximetry” (Sjoding et al, 2020, p. 1) and skin cancer diagnostic AI 

datasets with “substantial under-representation of darker skin types” (Wen et al, 2021, p. 1). 

Another example of design-induced error is illustrated by Open AI’s language-generating system 

called GPT-3. GPT-3 is a significant step towards AGI, and at first glance has an impressive ability 

to produce human-like text - but accuracy is not its strong suit. Although its output is grammatical, 

and even impressively idiomatic, it is untrustworthy. GPT-3 generates crucial failures such as this 

example of a prompt offered by researchers with GPT-3’s continuation shown in bold: 

“At the party, I poured myself a glass of lemonade, but it turned out to be too sour, so I added a 

little sugar. I didn’t see a spoon handy, so I stirred it with a cigarette. But that turned out to be a 

bad idea because it kept falling on the floor. That’s when he decided to start the Cremation 

Association of North America, which has become a major cremation provider with 145 

locations” (Marcus and Davies, 2020, p.1). 

An emerging concern is that AI can also amplify biases as evidenced by a study examining natural 

language processing models: “Models generated many false answers that mimic popular 

misconceptions and have the potential to deceive humans” (Lin, Hilton and Evans, 2021, p. 1). As 

such, datasets are no more than selective stories (Winterson, 2021), and can lead to institutional 

errors if not treated as stories. A necessary design policy addressing such system design 

vulnerability is the treatment of uncertainty in sociotechnical systems development. 
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Treating uncertainty 

Policy-makers suggest the effective linkage between science and risk decisions depends upon at 

least two goals. First, scientific uncertainties must be reduced (i.e., predictions must be more 

accurate). Second, technical specialists and subject matter experts must “effectively communicate 

the nature and magnitude of these uncertainties to people who must take action” (Andrew, 2016, p. 

4). These intuitively attractive perspectives treat uncertainty as something to be overcome, and 

prediction as a “technical product that must be successfully integrated into the decision-making 

process” (Gallagher and Appenzeller, 1999, p. 79). 

Examples of similar assumptions often erroneously applied to risk assessments in systems design 

include the following error types: future causality can be inferred from past incident antecedents; 

precursors can be isolated as single contributors to incidents; sufficient incident failure data exist; 

and controls can be identified on a value basis. 

Key forces provoke such errors: “Risk ideology, which frames patterns of thinking for approaching 

analysis, and cultural norms for analysis, which evolve into a scheme of values adopted by risk 

analysts” (Andrew, 2014, p. 1). The measurement of a few risks can highjack attention away from 

searching for additional risks, leading to a triumph of precision over accuracy. A fuller search for 

risks (even if they are uncertain) is more useful than a scaled list of a limited number of risks: 

“Unfortunately, the problem due to uncertainty is compounded as existing hazard analysis 

techniques tend to ignore unknown uncertainties, and stakeholders involved in system development 

rarely track known uncertainties well through the system lifecycle” (Leong et al, 2017, p. 57). 

One current pattern of thinking within system development is that risks are described as a product 

of the probability of an event or circumstance and the scale of the outcome or consequence. 

However, life rarely keeps still long enough to measure all important aspects and it is difficult to see 

beyond figures to embrace complex reality. The linear view of risk is inadequate to support a 

systems view of risk, where successful interventions occur by identifying leverage in systems. One 

approach to reframing risk is to model the construct to reflect its often non-linear, emergent 

properties. This more realistic view of risk as systemic, recognises multiple events leading to 

interacting exposures which may lead to changing consequences that impact in different ways 

depending on vulnerability. The impacts could be both positive and negative because reward is also 

linked to risk.  

Systems thinking is a response to the technical focus of systems dynamics (Forrester, 1969) and has 

provided a language suitable for addressing complex design problems: “The systems thinking 

approach involves taking the overall system as the unit of analysis, looking beyond individuals and 

considering the interactions between humans and between humans and the artefacts within the 

system” (Stanton, Salmon and Walker, 2019, p. 3). It was motivated by a weakness of reductionist 

scientific analysis, which breaks a problem into parts and studies the parts in isolation to draw 

conclusions about the whole. This approach is ineffective for issues that are interrelated, exhibit 

emergence, and defy linear causation (often referred to as ‘real life’).  

Circular causation, where a variable may be both the cause and effect of another, has become the 

norm rather than the exception in sociotechnical systems: “Behaviours emerge not from the 

decision or actions of individuals but from the interactions between humans and artefacts across the 

wider system” (Stanton, Salmon and Walker, 2019, p. 3). 

True exogenous forces are rare. Recognition that the components of complex systems are 

fundamentally interconnected has emphasised the role of endogenous feedback loops, as illustrated 

in figure 1 which shows balancing and reinforcing feedback loops. When an arrow is used in 
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systems thinking diagrams, it does not denote linear cause but rather a circle of influence that may 

be both cause and effect (Senge, 1990). 

 

Figure 1: Systems thinking diagrams 

Problem fragmentation can lead to an unexpected property that emerges because lack of recognition 

that any given element may be both a cause and an effect contributes to continual growth.  

The emergent property construct is a powerful feature of systems thinking. Emergent properties in 

figure 1 are different because the systems have different structures given the behaviour of the 

elements when acting in concert. Although time delay is a feature of both systems, they are 

structurally different because the patterns of interaction result in different emergent properties - 

balance versus reinforcement, for example. Although a reinforcing system is illustrated here by an 

arms race, it may also describe a property of a well-designed sales and production system. 

A systems perspective of probability is necessarily quite different to a historical view. A systems 

view of probability also recognises future scenarios and possibilities. This is different to data-

centric models, which rely on defining reality tightly to allow measurement. In systems thinking 

terms probability emerges from a causal loop because patterns of events are better descriptions of 

systems behaviour than discrete events. Complex systems make data-centric limitations appear 

quite problematic, encouraging us to differentiate between detail complexity and dynamic 

complexity as they relate to probability judgements. Such complexities also highlight the need to 

distinguish resolvable uncertainty, which can be understood through discovery, from radical 

uncertainty, which cannot (Kay and King, 2020). 

A systems model of consequence ideally uncouples consequence as a property that necessarily 

occurs because of probability. It is just as valid to say that consequences pull probability, as it is to 

say that probabilities push consequence. Definitions of probability or consequence being leading 

parts of risk are a matter of perspective and are not intrinsic to the meaning of risk.  

One illustration of this effect is provided by prospect theory (Kahneman and Tversky, 1979), which 

describes our tendency to make different choices under different conditions, and to reframe the 

relationship between probability and consequence. Prospect theory suggests that when people are in 

a position of gain, they become increasingly risk averse (to maintain their gain); when people are in 

a position of loss and losses increase, they become more risk seeking (to reverse their loss). In 

systems thinking, people change how they deal with elements as patterns depending on context.  

So, many influences are both cause and effect, and consequence interacts with probability. Figure 2 

shows a systems view of probability and consequence comprising loops of elements that are both 

cause and effect.  
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The models of probability and consequence shown in figure 2 both involve uncertainty as one of 

their elements. Disruptions can be positive or negative (or both), as can vulnerability and impacts. 

 

Figure 2: Probability and consequence systems diagrams 

An uncertainty model integrates these factors into a cause-effect-cause picture. Figure 3 shows how 

retrospection and feedforward can be leveraged to yield foresight. In this uncertainty model risk 

acceptability is labelled risk appetite as this does not cast risk as a commodity to be avoided. Risk 

appetite describes how people feel about futures, providing insight for design decisions.  

 

Figure 3: A systems model of uncertainty 

Making risk appetite explicit is one of the key aims of the model in figure 3, because transparent 

stakeholder access to design decisions can be improved by recognising and valuing risk as an 

uncertain investment in potential reward and loss. For example, an unexpected outcome of 

AlphaGo’s match with Lee Sedol was that it won the series but not every game. AlphaGo lost the 

fourth game (of five) after it won the previous games. This is significant because by the end of 

game three it had won the series – its goal. Is it possible that it lost game four because it explored 

more about its opponent Lee Sedol? Was AlphaGo using the opponent to learn more about itself 

because it could afford to? A long-term reward for AlphaGo could be to improve by risking losing a 

game, as it generated its own tactics within the goal of winning the series. Controlled mistake-

making is after all one of the finest forms of learning. AlphaGo exhibited many behaviours of a 

designer as it mastered a form of ‘deliberative uncertainty’. 
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The case for transparent stakeholder access to design decisions underpinning systems development 

has a significant role to play in sociotechnical systems’ futures. Such transparency may be 

improved by considering uncertainty as modelled in figure 3, and the way it plays out in design. 

Conclusions for design policy and values 

This paper highlights selected limitations with cognition to illustrate how design policy and values 

may be improved. Design team decision-making has been examined regarding cooperative 

cognition goals in groupwork, and the innate biases of individuals and teams. Uncertainty multiplies 

these limitations, making the design of complex sociotechnical systems (such as AI) highly 

challenging. Cooperative cognition addresses these problems by focusing attention on dynamic 

versus detail complexity, and on resolvable versus radical uncertainty. By recognising these factors 

and suggesting one (of many) approaches to model uncertainty, cooperative cognition also makes 

biases easier to identify and treat: "All models are wrong but some are useful" (Box, 1979, p. 202). 

How DeepMind operated as a team when creating AlphaGo is a complex question, but some insight 

is given by DeepMind’s design strategy. The approach for AlphaGo was characterised by a decision 

architecture including a value network, a policy network, an evaluative network and network 

flexibility for scenario generation and self-learning. The design team operationalised a novel form 

of memory generated by creative and innovative percepts. Although some of AlphaGo’s behaviours 

astonished the design team, their invention would likely not have been realised without the design 

team leveraging design policy and value transparency.  

AlphaGo, as well as being a designed system, is also an accomplished designer. It exhibits the 

faculties of situation awareness, uncertainty modelling, and learns about bias inadvertently installed 

by DeepMind. As for AlphaGo’s cooperative cognition, its policy, value, scenario, and evaluative 

networks are perhaps analogous to Hudson’s colonies of selves (Hudson, 1983). 

Similar AI systems can act as design process exemplars for design teams, gaming loss-making 

scenarios safely to expand learning potential. These lessons have been incorporated into the 

development of AlphaFold (DeepMind, 2021b) which accelerates medical research, enabling 

scientists to target and design cures for diseases more efficiently. The engineering of bacteria to 

secrete proteins that make waste biodegradable has also been demonstrated by AlphaFold.  

This expanded design faculty also delivers the potential for unintended AI consequences with, for 

example, target-setting weapons systems, where military command being usurped is a critical 

uncertainty. Design policy and value principles explored in this paper are a contribution to making 

such design choices more transparent. Transparency helps recognise, for example, that datasets are 

selective stories and spotlights whose stories get to shape our reality (Winterson, 2021). 
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