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ABSTRACT 

The present paper sets the scene for a recorded workshop exploring the critical role of Human 

Factors and Ergonomics in the development, operation and evaluation of Artificial Intelligence. 

First, we lay out some foundations of the multidisciplinary developments commonly placed under 

the umbrella of “Artificial Intelligence/AI” and propose some fundamental definitions to facilitate 

the structure of our arguments and the foundations for the workshop. Then we explore the role of 

Human Factors and Ergonomics methods in ensuring that AI systems contribute to our disciplinary 

goal of enhancing human health and wellbeing. In closing we propose a research agenda designed 

to ensure that Human Factors and Ergonomics is applied in future AI developments. 
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Introduction 

At the time of writing of this paper, there is a frenzy around the term “artificial intelligence/AI” in 

the mainstream media reporting on various levels of systems complexity across virtually all 

products and services, from number plate recognition at car parks, to virtual assistants and Google 

search. That is because “Artificial Intelligence” is loosely and subjectively defined. Definitions 

seem to reflect more about the subjective understanding of an artefact’s behaviour by the observer, 

than anything objective about the specification of the artefact itself. To counter this, we define and 

use the “AI” interchangeably with the term “non-deterministic systems”. These are artefacts which 

have been specified, designed, programmed to continuously adapt their behaviour to their 

operational environment. Within that paradigm, the relationship between input and output is not 

fixed or determined directly by the designer of the artefact; it is rather fluid and changing according 

to its Machine Learning properties and the feedback received from the operational environment. 

“Machine Learning/ML ” is the subfield of “AI”, and it concerns the methods (in the form of 

algorithms) that enables artefacts to express learning behaviour and adaptation to an operational 

environment.  

Artificial intelligence 

The term ‘Artificial Intelligence’ was first coined in the 1950s by Dr John McCarthy, an American 

scientist working at Dartmouth College (McCarthy, 1955). The field of AI was established soon 

after, and early definitions of AI focussed simply on the capacity of machines to perform tasks that 

would normally require human intelligence (McCarthy et al., 1955; Minsky, 1968). Contemporary 

definitions have a broader focus, referring to non-human agents with the ability to interpret and 

learn from data in pursuit of a specific goal. Kaplan & Haenlein (2018), for example, define AI as 

systems with the ability to “interpret external data correctly, to learn from such data, and to use 

those learnings to achieve specific goals and tasks through flexible adaptation”.  



Ergonomics & Human Factors 2021, Eds R Charles & D Golightly, CIEHF 
 

ANI systems are now well established. Well known examples include Facebook’s facial recognition 

system, Apple’s personal assistant Siri, and Tesla’s self-driving vehicles (Kaplan & Haenlein, 

2018).  

The “holy trinity” of machine learning: supervised learning, non-supervised learning, deep 
learning 

Supervised learning, is a form of machine learning whereby an “answer key” is in place to provide 

the “ideal output” that the artefact is continuously optimising its behaviour towards. Linear and 

non-linear regression are common parts of such learning algorithms.  

Unsupervised learning.is a form of machine learning whereby there is no “answer key” included by 

the creator or added by a human during operation; instead, the artefact is continuously looking for 

mathematical or logical patterns in the accessible pool of data (which pool itself could be 

continuously evolving). In practice, despite the absence of direct human involvement  in defining 

such patterns, there is an opportunity to modify the properties of these, e.g., by setting the hyper-

parameters that the models apply. For instance, the user could specify whether the model would 

produce, say, 3 or 5 patterns. 

Deep Learning involves the use of unsupervised learning methods (e.g. neural networks) to not only 

discover patterns but also to develop policy that optimise a ‘reward’, thus including a self-

determined module of supervised learning. It is therefore easy to omit that even within this “deep” 

form of machine learning there is human involvement, such as  the need for a human to provide a 

definition of ‘reward‘ (such as win a board game) and a definition of ‘action‘ (such as how pieces 

on the board can be moved), and the computer will play millions of versions of the game to arrive 

optimal strategies for playing the game under any circumstance.  While the results of this approach 

(applied to board games or to image analysis) can be highly impressive, not that the problem 

domain in which these operate tend (at present) to be well defined, e.g., in terms of what defines a 

‚reward‘ or an ‚action‘. 

How did we get here 

The mainstream view is arguably that non-deterministic definition, especially in the form of 

programming is a field of computer science (Goodfellow et al, 2016), predominantly driven the 

urge for prediction. The most often quoted methods used by professionals of computer science 

backgrounds are: neural nets, Bayesian logic, various types of regression models. The latter should 

be familiar to professionals and researchers tagged as "human scientists" - such as human factors 

and ergonomics professionals. In fact , despite the lack of promotions, another force behind non-

deterministic programming comes from statistics (Gareth, 2013) and the urge for to analyse data for 

inference. One way or another, those two aims seem to define the applications of non-deterministic 

programming/machine learning/"AI" today. 

Applications and interfaces with HFE: the main focus of our workshop 

The first and main use of various machine learning applications was and still is as a tool for data-

analysis. Both as a cause and as an end to efficient analysis of massive dataset, exceeding the 

experience of the mere researcher, the flexibility offered by machine learning is matched by the 

ability to rapidly iterate millions of analyses. The successes of "AI" in drug discovery are 

fundamentally a case of machine learning application as a research tool. The second most common 

application of machine learning is as a tool for process/product improvement or development. These 

applications use machine learning which is continuously fed with life in-service data and feedback 

of a given operation. The main advantage of such application is the rapid and variety of alternative 

architectures in terms of people, process and equipment can suggest and model their performance. 
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The third application is machine learning as a product/service in its own right. Such applications 

take the form of "virtual assistants", and they have essentially evolved from the first application 

quoted above (data analysis tool), with the addition of a user interface. The use of those "assistants" 

in commercially available devices such as smartphones, are fundamentally a machine-learning 

search engine with an auditory and/or visual interface for use to interact with. 

The third application above, with the user interface being the part setting in apart from the "data 

analysis tool" case, should provide a clear area for HFE professionals to contribute to.  There are 

specific challenges due to the flexibility in the input/output, control/feedback loops compared to 

traditional HMI (Gkikas, 2019); however, these challenges are there for the HFE community to 

tackle. Then, the learning and subsequent effect of machine learning during process improvement 

applications is another new challenge but clearly the realm of the Human Factors Integration 

professional community. The question remains of course whether the existing evaluation and 

practice methods are fit for purpose when dealing with an intelligent system that generates multiple 

alternative scenarios and potential solutions in shorter time than a human operator can assess one of 

those scenarios. 

Artificial General Intelligence and HFE: the next train departing and how the HFE methods fit in.  

Whilst a failure to embed HFE in the AI lifecycle may lead to performance issues, accidents and 

even major catastrophes, a similar failure with the next and more advanced generation of AI could 

spell the end for humanity. So-called Artificial General Intelligence (AGI) systems will be equipped 

with advanced computational power, will be able to perform all of the intellectual tasks that humans 

can and will be able to learn, solve problems, adapt and self-improve, and undertake tasks for which 

they were not originally designed (Bostrom, 2014; Everitt et al., 2018; Gurkaynak et al., 2016; 

Kaplan & Haenlein, 2018). They will also have the capacity to control themselves autonomously; 

having their own thoughts, worries, feelings, strengths, weaknesses and predispositions (Muller et 

al., 2016; Pennachin & Goertzel, 2007). Whilst AGI systems do not yet exist, credible estimates 

suggests they could emerge by 2050 (Muller et al., 2016). 

Given their projected capabilities, AGI systems could revolutionize humanity. Potential benefits 

discussed include curing disease, revolutionising the nature of work, and solving complex 

environmental issues such as food security, oceanic degradation, and even global warming. 

However, it is widely acknowledged that a failure to implement appropriate controls could lead to 

catastrophic consequences. Various adverse impacts have been discussed, with the most pessimistic 

viewpoints suggesting that AGI will eventually pose an existential threat to humanity (Bostrom, 

2018).  

The intelligence explosion is a much-discussed scenario whereby rapidly self-improving AGI 

systems become far more advanced than their human counterparts (Bostrom, 2014). This ‘super-

intelligent’ AGI is the source of most scholars’ concerns. Bostrom (2014), for example, argues that 

the intelligence explosion will eventually lead to humans becoming obsolete and then extinct. The 

Future of Life Institute (FLI) identify two worrying scenarios. First, that super-intelligent AGI 

systems will be designed to do something devastating, such as kill (e.g. an AGI-based autonomous 

weapons systems), and second, that they will be designed to do something beneficial, but develop a 

destructive method to do so (e.g. a cancer prevention AGI system that decides to kill everybody 

who has a genetic predisposition to cancer). The latter argument is based on the notion that an AGI 

with a goal of some sort will seek more efficient ways of achieving its goal as well as more 

resources to do so. 

Regardless of whether the singularity is ever reached, there are other significant risks associated 
with AGI. These include the malicious use of AGI for terrorist and cyber-attacks, population control 
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and manipulation, a replacement of the human workforce, and mass-surveillance to name only a 
few. Across the literature there is widespread agreement on the need for urgent research into 
how best to design and manage AGI systems so that these kinds of risks are minimised (Amodei et 
al., 2016; Bostrom, 2014; 2017; Brundage et al., 2018; Omohundro, 2014; Steinhardt, 2015).  

The potential role of HFE in supporting the design and operation of safe AGI is compelling. 

Leading figures in the field of AI have discussed the need for designers to more fully consider the 

risks associated with AGI and to place more emphasis on how AGI will interact with humans and 

align with our goals. Of course, these considerations are precisely what HFE focuses on in many 

areas. It is therefore our view that HFE has a critical role to play in the design and operation of safe 

AGI (Salmon et al., In Press). Based on our work in safety and risk management, we recently 

identified three forms of AGI system controls that urgently require development and testing 

(Salmon et al., In Press): 

Controls to ensure AGI system designers and developers create safe AGI systems; 

Controls that need to be in-built into the AGIs themselves, such as “common sense”, morals, 

operating procedures, decision-rules, etc; and 

Controls that need to be added to the broader systems in which AGI will operate, such as regulation, 

codes of practice, standard operating procedures, monitoring and maintenance systems, and 

infrastructure. 

Based on this Salmon et al. (In Press) reviewed fifteen categories of HFE method to determine 

whether they could be used in AGI design and management. These categories of HFE method 

ranged from task and cognitive task analysis, workload and situation awareness assessment to risk 

assessment and systems analysis and design methods. All 15 categories of HFE method were 

deemed to be suitable for use in support of AGI system design and management. Critical areas 

where HFE can contribute included: risk assessment, the design of risk controls, human-AGI 

interactions, teaming, standard operating procedures, dynamic function allocation, usability 

assessment, AGI errors and failure, and also aspects of AGI cognition, such as decision-making, 

situation awareness and cognitive workload. In addition, systems HFE methods such as Cognitive 

Work Analysis (Vicente, 1999), the Systems Theoretic Accident Model and Process (STAMP; 

Leveson, 2004), the Networked Hazard Analysis and Risk Management (Net-HARMS; Dallat et al., 

2018) and Agent-Based Modelling (ABM; Bonabeau, 2002) were deemed to be particularly suited 

to the design and testing of appropriate AGI controls. 

In the recorded workshop, we will work through an AGI case study scenario designed to showcase 

how HFE methods can be used to support the design of safe AGI.  

References 

Amodei., D., Olah, C., Steinhardt, J., Christiano, P., Schulman, J., Mane, D. (2016). Concrete 

problems in AI safety. AI, 1-29. 

Bostrom, N. (2014). Superintelligence: Paths, Dangers, Strategies. Oxford University Press, Inc. 

New York, NY, USA 

Bostrom, N. (2017). Strategic Implications of Openness in AI Development. Global Policy, 8:2, 

135-148. 

Bonabeau E. (2002). Agent-based modeling: Methods and techniques for simulating human 

systems. Proc Natl Acad Sci, 99:3, 7280-87. 



Ergonomics & Human Factors 2021, Eds R Charles & D Golightly, CIEHF 
 

Dallat, C., Salmon, P. M., & Goode, N. (2018). Identifying risks and emergent risks across 

sociotechnical systems: The NETworked Hazard Analysis and Risk Management System 

(NET-HARMS). Theoretical Issues in Ergonomics Science, 19(4), 456-482. 

Everitt, T., Lea, G., Hutter, M. (2018). AGI safety literature review. IJCAI. arXiv: 1805.01109. 

Gareth, J. (2013). An Introduction to Statistical Learning. Springer: New York. 

Gkikas, N. (2019) Allocation of Function in the era of Artificial Intelligence: a 60 year old 

paradigm challenged. Contemporary Ergonomics 2019. Taylor and Francis: London.  

Goodfelow, I., Bengio, Y., and Courville, A,. (2016). MIT Press: Boston, MA. 

Gurkaynak, G., Yilmaz, I., Haksever, G. (2016). Stifling AI: Human perils. Computer Law and 

Security Review, 32:5, 749-758 

Kaplan, A., Haenlein, M. (2018). Siri, Siri, in my hand: Who’s the fairest in the land? On the 

interpretations, illustrations, and implications of artificial intelligence. Business Horizons, 

62:1, 15-25 

Leveson, N. G. (2004). A new accident model for engineering safer systems. Safety Science, 42:4, 

pp. 237—270. 

Müller, V. C., Bostrom, N. (2016), ‘Future progress in artificial intelligence: A survey of expert 

opinion’, in Vincent C. Müller (ed.), Fundamental Issues of Artificial Intelligence (Synthese 

Library; Berlin: Springer), 553-571. 

Omohundro, S. (2014) Autonomous technology and the greater human good, Journal of 

Experimental & Theoretical Artificial Intelligence, 26:3, 303-315. 

Pennachin, C., Goertzel, B. (2007). Contemporary Approaches to Artificial General Intelligence. In 

B. Goertzel & C. Pennachin (Eds.), Artificial General Intelligence, Springer. 

Steinhardt, J. (2015). Long-Term and Short-Term Challenges to Ensuring the Safety of AI Systems. 

https://jsteinhardt.wordpress.com/2015/06/24/long-term-and-short-term-challenges-to-

ensuring-the-safety-of-ai-systems/ 

 

 


