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ABSTRACT 

The issue of ‘explanation’ has become prominent in automated decision aiding, particularly when 

those aids rely on Artificial Intelligence (AI).  In this paper, we propose a formal framework of 

‘explanation’ which allows us to define different types of explanation. We provide a use-cases to 

illustrate how explanation can differ, both in human-human and human-agent interactions.  At the 

heart of our framework is the notion that explanation involves common ground in which two parties 

are able to align the features to which they attend and the type of relevance that they apply to these 

features.  Managing alignment of features is, for the most part, relatively easy and, in human-human 

explanation, people might begin an explanation by itemizing the features they are using (and people 

typically only mention one or two features).  However, providing features without an indication of 

Relevance is unlikely to provide a satisfactory.  This implies that explanations that only present 

features (or Clusters of features) are incomplete. However, most Explainable AI provides output 

only at the level of Features or Clusters.  From this, the user has to infer Relevance by making 

assumptions as to the beliefs that could have led to that output. But, as the reasoning applied by the 

human is likely to differ from that of the AI system, such inference is not guaranteed to be an 

accurate reflection of how the AI system reached its decision.  To this end, more work is required to 

allow interactive explanation to be developed (so that the human is able to define and test the 

inferences and compare these with the AI system’s reasoning).  
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Introduction 

According to a 2017 report from the AI Committee of the British Parliament, “The development of 

intelligible AI systems is a fundamental necessity if AI is to become an integral and trusted tool in 

our society… Whether this takes the form of technical transparency, explainability, or indeed both, 

will depend on the context and the stakes involved, but in most cases we believe explainability will 

be a more useful approach for the citizen and the consumer.…”1 Providing an ‘explanation’ for the 

output of an AI system ought to make it easier for a human to understand the output.  One approach 

to AI explanation is to focus on the algorithm used by the AI system: “Given an audience, an 

explainable Artificial Intelligence is one that produces details or reasons to make its functioning 

clear or easy to understand.” (Arrieta et al., 2020).  Such understanding could allow the human to 

challenge the output by either offering information that the computer had not considered or provide 

the computer with counter-factual examples. Often, the ultimate purpose of AI explanation is to 

allow the human to accept responsibility for the consequences arising from this output; be it in the 

form of medical diagnosis or treatment recommendation, or decisions on loan applications, or 

 
1 “AI in the UK: Ready, Willing and Able?,” report, UK Parliament (House of Lords) Artificial Intelligence Committee, 

16 April 2017; https:// publications.parliament.uk/pa/ld201719/ldselect/ldai/100/10002 .htm.   
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actions made by autonomous vehicles. However, creating ‘explainable AI’ is not trivial (Arrieta et 

al., 2019; Mueller et al., 2019), and a significant part of this problem lies in developing a clear 

definition of ‘explanation’.   For an Ergonomics perspective, an ‘explanation’ ought not to be solely 

the concern of the ‘user’ of an AI system.   But this should concern all humans who communicate 

through the AI systems, i.e., the humans who programme and deploy the AI systems, the analysts 

who use AI systems, people who collect data that will be used by the AI system, and the managers 

and other stakeholders who use the output from the AI systems.  From this, we claim that there is 

not one type of ‘explanation’ but several.  We present a framework in which these different types of 

explanation can be realized.  We are interested in the boundaries across which agents (human or AI) 

will share information and the nature of ‘explanation’ required across these boundaries. 

Defining explanation 

In an early attempt at a formal definition of explanation, Hempel (1924) proposed a ‘Covering Law 

Model’ of History.  A core question for historians is why a given Event, E, occurred.  Hempel 

suggested that a set of prior events (or states) could be regarded as antecedent Causes, and these are 

combined according to some ‘Law’ that the historian proposed.  From this, an argument could be 

presented (either deductively or inductively) that the occurrence of antecedents increases the 

probability of E occurring.  While the term ‘Law’ might feel overly reductive, Hempel’s (1924) 

approach offers us an opportunity to define an Explanation in terms of specific elements and their 

relations to each other. 

Elements of Explanation 

Our aim is to produce a formal description that can reflect different types of explanation, that is 

applicable to human-human conversation and human-AI interaction, and that allows us to ask how 

explanations are produced.  This is represented in a framework (figure 1).   

 

 

 

 

 

 

 

 

 

 

 

Figure 1: A framework for explanation 

From [1], an Explanation is generated when two parties, X1 and X2, in a Situation, S, seek to align 

the sets of features of the Situation to which each party attends, with X1 seeking to alter the notion 

of Relevance applied by X2, knowing that this could lead to an Action.  Actions could be, for 

Situation 
S = {fi….fn} 

Explainee, X2 

Sx2  S  

Rx2 = (FCBP) 

Explainer, X1 

Sx1  S  

Rx1 = (FCBP) 

Explanation, E 

Ei = si  Ri→Aj                 

sx1 sx2 

Rx1  Rx2 

Action, A 
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example, that X2 acknowledges or accepts the Explanation, that X2 challenges the explanation or 

seeks further information, that X2 performs some task as a result of the explanation.  

Elaborating on this, an explanation, E, occurs in, and relates to, a situation.  A situation, S, has a set 

of features, {fi….fn}, which can be described symbolically, using words, numbers, pictures, etc.  A 

‘feature’ is some aspect of the situation to which people can attend and individuals in a situation 

ground their Situation Awareness, si, by attending to a subset of all features in S, i.e., si  S.  

Features are external to individuals, in that anyone in S ought to be able to attend to the same 

features.  However, we accept that there will be situations in which some features might either in 

internal (i.e., known by an individual) or not be immediately accessible to all parties.  

The first challenge in producing an explanation is to ensure that the set of features to which the 

Explainer, X1, attends will overlap with the set used by the Explainee, X2.  This means that there 

should be approximate equivalence between these sets of features, i.e., sx1 sx2.  Notice that we do 

assume that these sets are identical, only for there to be sufficient overlap, i.e., ‘common ground’ 

(Clark, 2015).  In part, this requires X1 and X2 to have overlapping feature sets; which might be 

particularly challenging if one or both parties are relying on internal, inferred features rather than 

external features, and so there is an obvious need to share features which contribute to the 

interpretation of the situation. 

From this, a second challenge is to agree on which features define the Situation, i.e., to define 

‘relevance’.  Relevance, R, can be defined in terms of four levels:  

• Features, F: features in the situation to which both parties can attend;   

• Clusters, C: features which typically co-occur in similar situations;   

• Beliefs, B: the reason why clusters co-occur, and which can predict consequences if specific 

features alter;   

• Policies, P:  rules which allow actions to be linked to clusters or features.   

Thus, Relevance is defined in terms of F or C or B or P, i.e., Rxi = (FCBP). 

 

From this, we propose that an Explanation, E, involves the set of Feature, {fi….fn},  to which a 

person attends in a situation, S, a means of defining the relevance, R, in terms of F, C, B, or P, of 

these features and a (potential) aim of influencing Action, A: 
 

Ei = si  Ri→Aj                ,   where R = (FCBP)                          [1] 

An Explanation ought to indicate how the features align to Relevance. As in Lombrozo’s (2010) 

hypothesis, different modes of cognition employ different modes of abductive reasoning, so that 

there is more than one type of Explanation process.  Figure 1 suggests that initial alignment 

involves checking the features attended by x1 and x2. If these are not aligned, then the first-pass 

Explanation might involve highlighting specific features, so that sx1 sx2. Where there continues to 

be uncertainty or misalignment, then further action might be required to produce alignment across 

one or more type of Relevance.  Misalignment of Belief could involve challenging the selection of 

features; misalignment of Cluster could involve analysis using a different set of features; 

misalignment of Policy could involve proposing a different strategy.   
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Scenario 

Having defined elements of Explanation, we apply these to use-cases to illustrate the processes that 

might occur: 

 

A hacker has obtained access to email accounts in your organization and is 

sending scurrilous messages that appear to originate from people you work with. 

An investigation by your IT team, supported by an Intelligent Network Analysis 

System, results in a change to the management of the email system, and the 

problem is resolved. As a result of this, email users have to create new 

passwords.   

In this Scenario, the Situation has features that include measures of network activity, e.g., messages 

across a network constitute a Feature, a count of messages over time constitutes a Cluster, whether 

the network is ‘normal’ or ‘unusual’ a Belief, and responses to manage the network is a Policy.    

Examples of Explanation: human-human 

Example H-H.I: Sx1  Sx2 and Rx1  Rx2:  In this instance, both parties assume that Sx1  Sx2 and Rx1  

Rx2, and the need for explanation is negligible. However, when Sx1  Sx2 the individuals will need to 

resolve common ground, e.g., agree which features are relevant. If Explainer, X1, and Explainee, X2, 

have similar knowledge, training, experience etc., i.e., X1  X2, then alignment could involve 

indicating a change in a relevant feature.  We assume there is ‘honest signaling’ (Maynard Smith 

and Harper, 2003) in that the feature is relevant to the situation.  For example, the email traffic in 

the network might be unusually low for a Tuesday.  In this case, X1 might draw the attention of X2 

to this feature. However, if X2 does not recognize the relevance of this feature, then an explanation 

would involve X1 both highlighting the feature and presenting the Belief as to its relevance. Here, 

(because X1  X2 is the equilibrium state) X2 should interpret the Belief with minimal effort, i.e., X1 

can highlight the relevant features and expect X2  to access a Belief to determine relevance. 

Example H-H.II: Sx1  Sx2 and Rx1  Rx2 : For people without similar backgrounds (i.e., X1  X2) 

alignment will be more effortful.  As an initial move, the focus on features would allow people to 

check their assumption that alignment is possible, or the Explainer could encourage the Explainee 

to infer an appropriate Feature, Cluster, Belief or Policy. A characteristic of explanation, 

particularly in social-cognitive psychology, is that people are likely to offer one or two features as 

first-pass explanation (McClure et al., 2001; Leddo et. al., 1984; Tversky & Kahneman, 1983). 

These ‘features’ imply (a) a string of causal reasoning that the other people are assumed to be able 

to perform, and (b) to be sufficient to explain the situation.   

Example H-H.III: Sx1  Sx2 and Rx1  Rx2 and Rx2  rx1Rx1: Assume that an experienced 

practitioner is providing a training example to a new apprentice. In this instance, the aim is not 

necessarily to create full alignment (that is, the apprentice will not know everything that the 

experienced practitioner knows).  Rather, there is an expectation of a change in the knowledge of 

the apprentice towards a subset of the knowledge of the experienced practitioner, i.e., Rx2  

rx1Rx1.  In order for this to occur, there is a need to establish that Sx1 = Sx2.  In this case, an 

explanation (a) ensures that X2 attends to specific features, in order to (b) encourages the knowledge 

of the relevance of these features to a Policy, i.e., the operations that can be performed over the 

features. This could allow the apprentice to distinguish between two specific types of network 

attack. 
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Example H-H.IV: S1  S2 and R1  R2 and R2  r1R1  and A2 = s2:  While Example III 

emphasizes explanation as an epistemic objective (to increase knowledge of X2), this might not be 

so important in an analyst-user interaction. In this case, the emphasis might be on ensuring that the 

user understands the situation (and the consequences of their actions on this), i.e., Ax2 = sx2. In 

other words, the emphasis is on motivating the user to change a password, etc.  It is arguable 

whether this motivational objective is fully dependent on a change in knowledge, e.g., does it matter 

if the user does not understand the entire basis of the advice as long as they act as required?  In this 

case, the explanation places more emphasis on the action, A, to perform and the constraints (and 

consequences) of this action.  Change in knowledge would be required only as far as it supported 

this change in action, i.e., for X2 to have a ‘productive understanding’.  Indeed, an aim would be for 

X2 to become their own Explainer (or to have the analyst-as-explainer replaced by another source, 

such as a leaflet, web-site, etc.). 
 

Example H-H.V: Sx1  Sx2 and Rx1  Rx2: Assume that the incident is communicated to the public by 

a newspaper story.  In this case, the reader of the newspaper will have a third-hand account (via IT 

department to PR department to journalist) and only a partial view of the situation. Further, assume 

that the newspaper reader is not an IT specialist.  In this case, while the newspaper story might 

provide an ‘explanation’ of the hacking (in terms of the broad nature of the event), it might lack 

sufficient detail to enable reconstruction of either situation or knowledge. If the newspaper reader 

wished to implement the fix to the problem (to prevent their own email account being hacked), then 

it is unlikely that the explanation here would be sufficient. 
 

Example H.H.VI: Sx1  Sx2 and Rx1  Rx2: Assume that a formal report is written following the 

incident.  This report is consulted by other analysts (possibly in other organizations).  In this case, 

X1 is the report (rather than another person). One can assume some equivalence of knowledge (in 

terms of the training and experience of the analysts) but differences in their access to the situation.  

So, this sequence of formal reports is analogous to research on ‘transmission chains’ (Bartlett, 

1932).  As information passes through a transmission chain, so it loses redundancy, becoming more 

focused (Kempe et al., 2019).  This might be the result of the formal structures imposed by the style 

of reports; it might be the result of the manner in which people share information; or it might be the 

result of a desire to focus on relevant information. A consequence of this might be that fewer of the 

Features of the original situation become shared – until, somewhere down the line, a reader might 

challenge the report because it does not correspond to their interpretation of the situation. At this 

point, there might need to communication between this reader and the report’s originator with a 

view to establishing the relevant factors of the situation. When the X2 does not agree with the 

explanation provided by the report and / or does not understand it, it is important to consider how 

the X2 decides that an explanation is not sufficient for their goals and understanding. Miller (2019) 

refers to this as ‘explanation evaluation’ and concludes that important criteria to evaluate an 

explanation are: probability, simplicity, generality, and coherence with prior beliefs. So, in our 

hacking example, X2 is most likely to accept an explanation that a) is consistent with their beliefs 

about email hacking (coherence); b) includes fewer causes but can be related to events they have 

experienced (simplicity, generality); and c) that a particular type of attack is a ‘true’ cause of the 

observed features, e.g. the influx of unsolicited mail (probability). Note that the simple statistical 

relationship (Cluster) between a particular type of attack and the quantity of unsolicited mail is not 

sufficient explanation; causes are desired to explain events (Halpern and Pearl, 2005). It is also 

worth noting that whilst a true / likely cause is an attribute of a good explanation, to say that the 

most probable cause is the best explanation would be incorrect (Hilton, 1996).  
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Applying our Explanation framework to human-agent interaction 

Having developed a framework for human-human explanation and provided some illustrative 

examples, we consider how these explanation types might apply to human-agent interactions.  

Before exploring these, it is worth noting that ‘explanation’ is not always something that humans 

find easy to perform.  This could be because we are not able to reflect on the features we are using, 

or to articulate the concept of relevance that we apply, or we might not be able to take the 

perspective of our Explainee and so cannot determine their beliefs.  If humans struggle with 

‘explanation’ we should not be surprised to find that this is a challenge for AI systems. 

Example H.A.I: S1  S2 and R1  R2:  Recommender Systems might inform their users of the specific 

features that inform the recommendation, e.g., a word-cloud taken from movie reviews (Gedkili et 

al., 2014) or a histogram of ratings of a movie by ‘similar’ users (Herlocker et al., 2000).  Here, 

Relevance is presented as a Cluster.  Alternatively, ExpertClerk (Shimazu, 2002) offers a 

recommendation in terms of trade-offs of specific features, e.g., “This necktie is more expensive but 

is made of silk. That one is cheaper but is made of polyester.”  Objects are compared in terms of 

features and the trade-off is presented as a Belief. 

Example H.A.II: Sx1  Sx2 and Rx1  Rx2: In most applications of Machine Learning (ML), 

identifying a Cluster does not involve a Belief2.  In this case, while there might be an intention of 

aligning the features that ML algorithms use with those that the human can interpret, such that S1  

S2, it is much more difficult to align Relevance. However, users might assume Belief from the 

output of ML, e.g., either anthropomorphizing the process by which an outcome has been reached 

or assuming that counter-factual reasoning would be possible by modifying the features that the ML 

uses.  Association-Rule Mining, for example, can be used to highlight dependencies between 

features that are more akin to our notion of ‘belief’ (Altaf et al., 2017). 

Example H.A.III: Sx1  Sx2 and Rx1  Rx2 and Rx2  rx1Rx1:  Educational technologies provide 

personalized and adaptive environments to support learning (Dawson et al., 2010).  In these 

systems, learners are provided with situations in which they review material (features) in order to 

answer questions (action), and performance on the questions will impact on progression their the set 

of material, i.e., learners who make mistakes or show misconceptions will be provided with more 

material of similar content and more questions of similar difficulty.  

Example H.A.IV: S1  S2 and R1  R2 and R2  r1R1  and A2 = s2: Technology-mediated 

‘nudging’ (Caraban et al., 2019) creates ‘choice architectures’ that present alternative actions to 

decision makers in ways that are intended to support positive changes in behaviour. These 

technologies encourage or discourage behaviours that might have impact on the user’s well-being.  

These technologies remind the user of consequences of their actions, suggest alternative actions, or 

 
2 We note that the word ‘belief’ is used in some forms of Machine Learning, but has quite a different meaning to the 

way we use it. For instance, in a Bayesian Belief Network (BBN) situation features are arranged in a network.  

Connections within this network are defined by probabilities, and altering these probabilities produces different output. 

For BBN, ‘belief’ is the probabilistic weighting of these connections. From our perspective, the weighting of 

connections is, at best, a ‘Cluster’ and more likely simply a set of features (as far as the human decision maker is 

concerned).  This means that the BBN does not express a belief about its outcome, i.e., it does not offer a plausible, 

generalizable frame in which to make sense of the connections between features or account for what might happen if 

features are missing. In other words, there is no underlying model (outside the data) that would allow prediction from 

the Cluster. 
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emphasize social desirability of the consequences.  In our terms, the focus is on Action, through 

highlighting relevant Beliefs. 

Example H.A.V: Sx1  Sx2 and Rx1  Rx2: ‘Explainable AI’ (Arrieta et al., 2020) tends to involve a 

Situation in which the explainer is the AI system, which attends to a set of features in terms of a 

Policy.  In Deep (or Reinforcement) Learning, the AI Policy will optimize reward (say, success in 

playing a game) by performing Actions in specific situations. Post-hoc analysis of the AI 

performance (e.g., in the form of gradient-based saliency plots, Greydanus et al., 2017) could allow 

the person to infer the features that the AI might have been using, i.e., Sx1  Sx2. However, it is not 

easy to discern how the Features were defined as Relevant. 

Example H.A.VI: Sx1  Sx2 and Rx1  Rx2: Argumentation technology (Reed et al., 2017) combines a 

computer model of reasoning towards conclusions (arguments) with an interface that allows users to 

explore the structure of these arguments.  We assume that the features or relevance offered by 

parties in an argument might not align. Through argumentation, parties identify points of similarity 

and difference, e.g., features to emphasize or notion of relevance. User interfaces for argumentation 

visualize the set of features drawn upon by an argument and their relations (which we would call 

Beliefs).  The user could then explore the effect of adding or removing features or changing 

relations, which could be particularly useful for counter-factual reasoning (Guidotti et al., 2019). 

Discussion 

A framework is developed to highlight this concept, and this is instantiated to show how different 

types of explanation can occur; each of which requires different means of support.  Primarily, an 

explanation involves agreement on the features (in data sets or a situation) to which explainer and 

explainee attend, and agreement as to why these features are relevant (and we propose three levels 

of relevance, i.e., ‘cluster’ in which a group of features will typically occur together; ‘belief’ which 

defines a reason as to why such a cluster will occur; ‘policy’ which justifies the belief and relates 

this to action).  Agreement (on features and on relevance) depends on the knowledge and 

experience of explainer and explainee, and much of the process of explanation involves ensuring 

alignment in terms of knowledge and experience.  Thus, ‘Explanation’ is the process by which 

common ground is established and maintained.  From our framework of explanation, we propose 

the following guidelines:  

 

• Explanations should highlight Relevance: include the relationship between features of a 

situation and the event being explained, and should be plausible in terms of a concept of 

Relevance agreed between Explainer and Explainee.  

• Explanations should include relevant Features: Explainer and Explainee should agree 

key features of the situation.  

• Explanations should be Framed to suit the audience: fit the explanation to the 

explainee’s understanding of the situation and goals. 

• Explanations should be interactive: involve the explainee in the explanation. 

• Explanations should be (where appropriate) actionable: the explainee should be given 

information that can be used to perform and improve future actions and behaviours. 
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